MAT 161 2.7 problems

1. Let
$$f(x) = \frac{1}{2}cos(2x)$$
. Find $f'(x)$, $f''(x)$, and $F(x)$.

2. Let $g(x) = x - \cos x$.

- a. Does *g* have any stationary points on $[0, 2\pi]$? If so, where?
- b. Where in the interval $[0, 2\pi]$ is g increasing?
- c. Find the maximum and minimum values of g on the interval $[0, \pi]$.
- d. Where is g concave down on the interval $[0, 2\pi]$?
- e. Where is g increasing most rapidly. What is the value of g' at that point?

3. Find the following limit by recognizing the form. Explain how you arrived at your answer.

$$\lim_{h \to 0} \frac{\sin(\frac{\pi}{2} + h) - (1)}{h}$$

- 4. Let $f(x) = \cos x$ and $g(x) = \sqrt{3} \sin x$. Enter these functions on your calculator and look at the graph on the interval $[0,\pi]$. Write a function h(x) that represents the vertical distance between f(x) and g(x).
 - a) Find the maximum vertical distance between the functions on $[0,\pi]$ using calculus and your calculator. Support your response.

b) Find the slopes of the tangent lines to f and g at the point on $[0,\pi]$ where the vertical distance between them is greatest.

c) Find the exact value (not decimal approximation) for the solution to part a.