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If we allow complex-entried matrices and then define Z¥ to be the Hermitian
matrices which are positive definite, it is clear also that our results concerning
>, may be modified to remain valid in ZZ. In addition we should note that our
notion of II, has no consistent analog in the complex-entried matrices. For in-
stance, a matrix 4 €Il, with respect to real vectors may not even have x*4x
real when complex vectors are allowed (* means “conjugate transpose”).

We have thus far formulated a theory of positive definite matrices. It is
clear that we may analogously define another (disjoint) set of matrices by re-
placing “>” with “<?” in the definition of positive definite. Such matrices are
usually termed negative definite, and, suggestively, we might designate this set
as —II, since A €11, if and only if —A4 & —II,. This, of course, is the key to the
development of a theory of negative definite matrices which would proceed
analogously (allowing for the peculiarities of negative numbers).

Positive (negative) semi-definite matrices may be defined by allowing the
possibility of equality in the definition of II, (or —II,). Their theory proceeds
similarly, but modified by allowance for 0 eigenvalues.

In the positive definite case, we have succeeded in establishing four charac-
terizations through theorems: by eigenvalues ((2)); by determinants ((5)); by
triangular decomposition ((6)); and by QTQ decomposition ((8)). This, plus the
additional properties commented on, is largely sufficient to both mathematically
describe and usefully apply positive definite matrices.
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LOGIC VERSUS PEDAGOGY
MORRIS KLINE, New York University

Humble thyself, impotent reason.
PascaL

1. The Current Emphasis on Logical Structure. There is no question that
mathematics is distinguished from all other bodies of human knowledge in that
it insists on deductive proof from explicitly stated axioms as the indispensable
condition for the acceptance of its conclusions. This requirement has indeed
conferred power on mathematics, for deductive proof has strengthened the
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structure. Moreover, the organization of mathematics into deductive systems
has given coherence to its vast contents, and the axiomatization inherent in this
type of organization has made clear precisely what is presupposed and hence
where such systems are applicable. It has also suggested abstractions which
embrace several structures as, for example, the theory of groups.

The deductive organization of mathematics is now a popular mode of presen-
tation in all instruction from the fourth or fifth grade up. Deductive proof is the
be-all and end-all of teaching. The enthusiasm for this mode of presentation is
somewhat understandable because it was only about 75 years ago, after over
2500 years of struggle, that deductive organization and, through it, rigor were
achieved. Mathematicians may be now giving vent in their textbooks to the
satisfaction that Poincaré expressed in 1900 at the International Congress of
Mathematicians when he gloated [11], “One may say today that absolute rigor
has been attained.” As an expression of enthusiasm this emphasis on deduction
and rigor might indeed be excused. However, when authors are challenged as
to the pedagogical wisdom of such presentations they now rejoin that this is the
way to understand mathematics. In other words, the deductive approach is
being defended as the pedagogical approach. Deductive organization and proof
are advocated as the answer to all of the difficulties which students have had in
learning mathematics and the open sesame to the subject. No longer will the
memorization of techniques be necessary. Mathematics will now be accessible
and understandable to almost all students.

2. The Intuitive Approach. Opposed to the deductive approach is the intui-
tive approach. Admittedly the nature of intuition is somewhat vague. It denotes
some direct grasp of the idea, whether it be a concept or proof. There may be a
special intuitive faculty distinct from the logical faculty that criticizes and
reasons. Whether or not there is an intuitive faculty there are specific and ex-
plicit aids to the intuition which enable it to function. Primarily it seems to rely
upon the senses, for, as Aristotle first put it, there is nothing in the intellect that
was not first in the senses, except, Leibniz added, the intellect itself. Hence one
of the useful devices is a picture. Consider exhibiting several triangles to incul-
cate the idea as opposed to the definition: the union of three non-collinear points
and the line segments joining them. How much more readily is the notion of
continuity grasped when presented as a curve which can be drawn with an unin-
terrupted motion of a pencil rather than by the ¢ —4§ definition.
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The intuition may be appealed to through physical arguments. The deriva-
tive as a velocity at an instant gives meaning to the concept, and the argument
that a ball thrown up into the air must have zero velocity at its highest point
suggests that the derivative must be zero at a maximum of a function.

We shall include in the intuitive approach what are often called heuristic
arguments. Through experience with actual objects a child can learn that
3+4+4=4+43. The generalization that a-+b=>0-a is heuristic. Likewise the fact
that if y=x", dy/dx =mnx""! is readily inferred from the special cases =2 and
n=23. Reasoning by analogy and even probabilistic arguments are heuristic.

Intuition is not static. Just as one’s intuition about what to expect in human
behavior improves with experience so does the mathematical intuition. The
latter may indeed suggest, as it did to Leibniz, that the derivative of a product
of two functions is the product of the derivatives. The conclusion should be
tested, another heuristic measure, and of course will be found to be false. Deeper
analysis will show that what holds for limits of functions does not hold for deriva-
tives, and the intuition will be sharpened by this experience.

Clearly the intuitive approach can lead to error, but committing errors and
learning to check one’s results are part of the learning process. If the fear of
errors is to be a deterrent, a child would never learn to walk.

It is the contention of this paper that understanding is achieved intuitively
and that the logical presentation is at best a subordinate and supplementary aid
to learning and at worst a decided obstacle. Intuition should fly the student to
the conclusion, make a landing, and then perhaps call upon plodding logic to
show the overland route to the same goals. If this contention is correct then the
intuitive approach should be the primary one in introducing new subject matter
at all levels. This recommendation may appear to be treason to mathematics, but
let us withhold judgment.

3. The Historical Evidence. Though no air-tight case for the intuitive ap-
proach can be made from a study of the historical growth of mathematics a brief
survey seems to offer some compelling arguments.

The first deductive structure was Euclid’s Elements. Euclidean geometry,
however, did not come into being in this form. It took 300 years, the period from
Thales to Euclid, of exploration, fumbling, vague and even incorrect arguments
before the Elements could be organized. Even this structure, intended to be
strictly logical, rests heavily on intuitive arguments, pointless and even mean-
ingless definitions, and inadequate proofs. That the logical structure can be
devised after a subject is created and understood is not in question. What is
relevant is that this deductive system came after the understanding was
achieved. Moreover, it is no accident that Euclidean geometry was the first
subject to receive any extensive mathematical development; the reason is that
the intuition is readily applied to infer geometrical facts and the very figures
suggest methods of proof.

A striking contrast is provided by the development of arithmetic and algebra.
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Whole numbers and fractions and the operations with them were well accepted
by the Egyptians and Babylonians, on an empirical basis, at least as far back
as 2000 B.C. But irrational numbers, once their true character was recognized
by the Pythagoreans, were not accepted by the classical Greeks as numbers.
Why not? Because whole numbers and fractions had an obvious physical mean-
ing whereas irrationals did not. The only intuitive meaning that one could
attach to irrationals was that they represented certain geometrical lengths.
What, then, did the Greeks do? They rejected irrationals as numbers and
thought of them as lengths. In fact they converted all of algebra into geometry
in order to work with lengths, areas and volumes that might otherwise have to
be represented numerically by irrationals, and they even solved quadratic equa-
tions geometrically.

The progress that was made in the use of irrational numbers is due to the
Alexandrian Greek civilization, which was a composite of the classical Greek,
Egyptian and Babylonian civilizations, and to the Hindus and Arabs who were
entirely empirically oriented. It was the Hindus who decided that V2+/3=1/6,
and their argument was that these irrationals could be “reckoned with like
integers,” that is, like 4/4+/9 = 1/36. Irrational numbers were gradually accepted
because of their utility and because familiarity breeds uncriticalness. The logical
presentation of irrational numbers was not created until the 1870’s.

Negative numbers, introduced by the practical-minded Hindus about 600
A.D., did not gain acceptance for 1000 years. The reason: they lacked intuitive
support. The history of complex numbers is somewhat similar, though these did
not appear until about 1540, and only about 200 years were required for these to
be used somewhat freely. A remark of Gauss is very pertinent. As is well known,
he was one of the men who discovered the geometrical representation of complex
numbers, and about this he said in 1831 [1], “Here (in this representation) the
demonstration of an intuitive meaning of +/—1 is completely grounded and
more is not needed in order to admit these quantities into the domain of the
objects of arithmetic.” Neither Descartes, Fermat, Newton, Leibniz, Euler,
Lagrange, Gauss, or Cauchy could have given a definition of negative or complex
numbers, or irrationals for that matter. Yet all of them managed to work with
these numbers quite satisfactorily, to put it mildly, at least insofar as their times
employed these numbers. In 1837 Hamilton did give the ordered couple defini-
tion of complex numbers in terms of real numbers but the logical development
of the real number system itself was not constructed until the last part of the
nineteenth century. The history of the entire complex number system is perti-
nent not only in itself but because algebra and analysis obviously utilize the
number system and whatever basis there was for the latter had to serve as the
basis for algebra and analysis.

The manner in which mathematics develops and is understood is beautifully
exemplified by the history of the calculus. For the sake of brevity let usignore
the predecessors of Newton and Leibniz. The basic concept of the calculus is,
of course, the instantaneous rate of change of a function, that is, the limit of
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Ay/Ax as Ax approaches 0. Where it was physically appropriate Isaac Newton
thought of the limit in question as a velocity or as an acceleration, and he made
great use of this fact in solving physical problems. But Newton experienced
insuperable difficulties in explaining how he obtained the derivative from
Ay/Ax. Because Ay approaches 0 when Ax does, he had to account for the fact
that the quotient approached a definite number. Newton wrote three papers on
the calculus and put out three editions of his famous Mathematical Principles
of Natural Philosophy, and in each of these publications he made different ex-
planations. In his first paper he says that his method is “shortly explained
rather than accurately demonstrated.” In his second paper he changed some
terminology so as “to remove the harshness from the doctrine of indivisibles,”
but the logic is no more perspicuous. In the third paper Newton says “in mathe-
matics minutest errors are not to be neglected.” And then he gives a definition
of the derivative, or fluxion as he called it, which supposedly shows that a
fluxion is a precise concept. “Fluxions are, as near as we please, as the increments
of fluents generated in times, as equal and as small as possible, and to speak
accurately, they are in the prime ratio of nascent increments; yet they can be
expressed by any lines whatever, which are proportional to them.”

In the first and third editions of the Principles Newton says, “Ultimate ratios
in which quantities vanish, are not, strictly speaking, ratios of ultimate quanti-
ties, but limits to which the ratios of these quantities decreasing without limit,
approach, and which, though they can come nearer than any given difference
whatever, they can neither pass over nor attain before the quantities have
diminished indefinitely.” He says further, “by the ultimate ratio of evanescent
quantities is to he understood the ratio of the quantities, not before they vanish,
nor after, but that with which they vanish.” There are other statements by
Newton in the published versions of his works which differ from the above.
Clearly Newton struggled hard to define the derivative but scarcely succeeded
in formulating a precise concept.

Leibniz worked not with the ratio Ay/Ax and its limit but with differentials
dx and dy which, he said, though not zero were not ordinary numbers. They
were geometrically the differences in abscissa and ordinate, respectively, of two
“infinitely near points.” He too published many papers in which he tried to
explain the meaning of the ratio dy/dx. Concerning his first paper on the cal-
culus, published in 1684, even his friends, the Bernoulli brothers, said it was
“an enigma rather than an explication.”

Other papers and efforts to clarify his ideas did not accomplish any more.
In a letter to Wallis Leibniz says: “It is useful to consider quantities infinitely
small such that when their ratio is sought, they may not be considered zero but
which are rejected as often as they occur with quantities incomparably greater.
Thus if we have x-+dx, dx is rejected. But it is different if we seek the difference
between x+dx and x. Similarly we cannot have xdx and dxdx standing together.
Hence, if we are to differentiate xy we write (x-+dx)(y+dy) —xy=xdy+ydx
+dxdy. But here dxdy is to be rejected as incomparably less than xdy-+ydx.
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Thus in any particular case, the error is less than any finite quantity.”

In the absence of satisfactory definitions he resorted to analogies to explain
his differentials. At one time he referred to dy and dx as momentary increments
or as vanishing or incipient magnitudes. These are Newtonian phrases. By way
of additional explanation he said that as a point adds nothing to a line so dif-
ferentials of higher order, e.g., dxdx, add nothing to dx. Alternatively dx is to x
as a point to the Earth or as the radius of the Earth to that of the heavens.
There are many other statements by Leibniz which are equally obscure.

There were many attacks on Leibniz’s and Newton's work. Newton did not
respond but Leibniz did. He objected to “overprecise critics” and argued that
we should not be led by excessive scrupulousness to reject the fruits of invention.
The phrases infinitely large and infinitely small signify no more than quantities
which one can take as great or as small as one wishes. And then he adds that one
can use these ultimate quantities, the actual infinite and the infinitely small, as a
tool much as the algebraists use the imaginary with great profit. He also said
that if one prefers to reject infinitely small quantities, it was possible instead to
assume them to be as small as one judges necessary in order that they should be
incomparable and that the error produced should be of no consequence or less
than any given magnitude.

Of course the successors of Newton and Leibniz were aware of the lack of
rigor in the calculus. Euler in the first classic text on the calculus, his Introductio
in Analysin Infinitorum (1748), and again in his Institutiones Calculi Differen-
tialis (1755) and Institutiones Calculi Integralis (1768-70), Lagrange in his
Théorie des fonctions analytiques (1797) and d’Alembert in his article Limsite in
the Encyclopédie all struggled manfully but futilely to clarify the basic concepts
of the calculus. Even Cauchy, the founder of rigor, gave definitions in his Cours
d’' Analyse Algébrigue (1821) that would be considered loose and intuitive today.
For example he says, “When the successive values attributed to a variable
approach indefinitely a fixed value so as to end by differing from it by as little
as one wishes, this last is called the limit of all the others.” He defines continuity
essentially by the requirement that the numerical value of the difference
f(xo+a) —f(xe) decrease indefinitely with that of a. Because he was far more
intuitive than rigorous Cauchy failed to distinguish between continuity and dif-
ferentiability and even after his attention was called to this fact he persisted for
twenty years in using differentiability where he had assumed only continuity.
Clearly Cauchy’s own rigor was beyond his comprehension. Cauchy also failed
to recognize the necessity for the uniform convergence of series in order to inte-
grate series term-by-term and to assert that the sum of a convergent series of
continuous functions is continuous. Nor did he question that a function of two
independent variables has a limit in both variables if it has a limit in each vari-
able separately.

It is interesting that with respect to continuity and differentiability most
texts of the nineteenth century including those written by the best mathemati-
cians either followed Cauchy or “proved” that continuity implied differentiabil-
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ity. This is why the mathematical world was shocked when Weierstrass in 1872
produced the example of a function that is continuous for all real values of x
but has no derivative at any value of x. Luckily this example came late in the
development of the calculus for, as Emile Picard said in 1905 [8], “If Newton
and Leibniz had known that continuous functions need not necessarily have a
derivative, the differential calculus would never have been created.”

In view of the vague, unclear, and even incorrect foundations of the calculus
one might expect that the subject would collapse. But before Weierstrassian
rigor became known through his lectures at Berlin in the 1870’s not only had the
calculus been extended and applied but the subjects of ordinary and partial
differential equations, the calculus of variations, differential geometry, and the
theory of functions of a complex variable had been erected on the calculus. How
did the mathematicians achieve these tremendous victories? Clearly they
thought intuitively.

We could examine the developments in projective geometry, non-Euclidean
geometry and other areas but the story would be about the same. One can safely
say that no proof given up to at least 1850 in any area of mathematics, except in
the theory of numbers, and even there the logical foundation was missing, would
be regarded as satisfactory by the standards of 1900, to say nothing about to-
day’s standards. Yet the mathematics created by the men was surely understood
by them. The history teaches us then that the intuition of great men is far more
successful than their logic.

One could of course argue that the growth of mathematics may indeed have
proceeded as described but now that we have the proper logical structures for
the number system, algebra, analysis and the various branches of geometry we
need not ask students to repeat the fumblings of the masters. We can give them
the correct approaches and they will understand them. This argument can be
countered with the fact that many mathematicians did try to build logical
foundations for the various subjects—witness Euler, Lagrange and Cauchy in
the calculus—and their failure to do so ought to be some evidence that the logical
approaches are not easy to grasp. Of course our students are superior to the best
mathematicians of the past. \

There is not much doubt that the difficulties the great mathematicians en-
countered are precisely the stumbling blocks that students experience and that
no attempt to smother these difficulties with logical verbiage will succeed. If it
took mathematicians 1000 years from the time that first class mathematics
appeared to arrive at the concept of negative numbers, and it did, and if it took
another 1000 years for mathematicians to accept negative numbers, as it did, we
may be sure that students will have difficulties with negative numbers. More-
over, the students will have to master these difficulties in about the same way
that the mathematicians did, by gradually accustoming themselves to the new
concepts, by working with them and by taking advantage of all the intuitive
support that the teacher can muster.

These conclusions have been reached by many great mathematicians who
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have concerned themselves with pedagogy. Poincaré said [12], “The zoologists
maintain that in a brief period the development of the embryo of an animal
recapitulates the history of its ancestors of all geological epochs. It appears that
it is the same in the development of the mind. The task of the educator is to
make the mind of the child go through what his fathers have experienced, to
pass rapidly through certain stages but not to omit any. For this purpose, the
history of the science ought to be our guide.” Even Hilbert, the founder of mod-
ern axiomatics, granted the high pedagogic and heuristic value of the genetic
method [2].

But we shall not insist on the evidence of history. There are other weighty
arguments.

4. The Distortions of the Deductive Approach to Mathematics. Far from
being the pedagogically sound representation of mathematics, the deductive
approach introduces distorted views of the subject. First of all, mathematics is
primarily a creative activity, and this calls for imagination, geometric intuition,
experimentation, judicious guessing, trial and error, the use of analogies of the
vaguest sort, blundering and fumbling. Even when a mathematician is con-
vinced that a result must be correct he must still create to find the proof. As
Gauss put it, “I have got my result but I do not know yet how to get it.” Every
mathematician knows that the hard work, tribulations and real thinking are
required by, and the sense of achievement derives from, the creative effort.
Writing up the final deductive formulation is a boring task.

Creativity presupposes flexibility in solving problems and any ideas from
any domain of mathematics should be entertained whether or not they fall
within the confines of a particular axiomatic structure. The latter, in fact,
acts as a straitjacket on the mind.

What does logic contribute to the creation of concepts? Suppose one wishes
to define the curvature of a surface. This definition is not arrived at by a de-
duction from axioms. It requires some deep insight to appreciate that this
concept can be effectively represented by the product of the maximum and
minimum curvatures of the curves through a point on the surface. As a matter
of fact this definition was created by Euler who paid no attention to axiomatics.

Some of the greatest ideas in mathematics are not at all a matter of logic.
Perhaps the best example is the realization that non-Euclidean geometry is
applicable to physical space. The logical side, namely, pursuing the conse-
quences of assuming a non-Euclidean parallel axiom, was a relatively simple
task and was performed by Saccheri, Lambert, Legendre, Schweikart, Taurinus
and many others. But it was Gauss who first recognized that these new geom-
etries are as applicable as Euclidean geometry. The consequences for mathe-
matics were as revolutionary as the very creation of mathematics itself.

It is true that some mathematicians, for example, Weierstrass in part of
his work, Peano and Frege, produced rigorous theorems or axiomatic deductive
structures. But in this work they were only reformulating what was already
known and their goal was to rigorize what was well understood. New ideas were
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never obtained in this manner. Logic discovers nothing, neither the statement
of a theorem nor its proof, even in the construction of axiomatic formulations
of known results. Thus the concentration on the deductive approach omits the
real activity. The logical formulation does dress up this activity but conceals
the flesh and blood. It is like the clothes which make the woman but are not
the woman. It is the last act in the development of a branch of mathematics
and, as one wise professor put it, when this is performed the subject is ready for
burial. Logic may be a standard and an obligation of mathematics but it is
not the essence.

The student should be creating mathematics. Of course he will be re-creating
it and with the aid of a teacher. This recreativity on the part of the student
is more popularly termed discovery today. Every teacher professes to espouse
discovery. The student can be gotten to do this if he is allowed to think intui-
tively but he cannot be expected to discover within the framework of a logical
development that is almost always a highly sophisticated and artificial recon-
struction of the original creative work.

The logical version is a distortion of mathematics for another reason. The
concepts, theorems and proofs emerged from the real world. It is the uses to
which the mathematics is put that tell us what is correct. Thus we add frac-
tions by finding a common denominator and not by adding numerators and
adding denominators though we do multiply fractions by multiplying numer-
ators and multiplying denominators. Likewise, the uses to which matrices are
put determine that multiplication is to be noncommutative though we can
devise purely mathematical multiplications of matrices that are commutative.
After we have determined what properties mathematical concepts and opera-
tions must possess on the basis of the uses of these concepts and operations we
then invent a logical structure, however artificial it must be, which yields these
properties. Hence, the logic does #ot dictate the content of mathematics. The
uses determine the logical structure. The logical organization is an after-
thought. As Jacques Hadamard remarked, logic merely sanctions the con-
quests of the intuition. Or, as Weyl put, “logic is the hygiene which the mathe-
matician practices to keep his ideas healthy and strong.”

In fact, if a student is really bright and he is told to cite the commutative
law to justify, say 3-4=4-3, he may very well ask, Why is the commutative
law correct? The true answer is, of course, that we accept the commutative
law because our experience with groups of objects tells us that 3-4=4.3. In
other words the commutative law is correct because 4:3=3-4 and not the
other way around. The normal student will parrot the words commutative law,
and he will, as Pascal put it in his Provincial Letters, “fix this term in his memory
because it means nothing to his intelligence.”

The deductive development of a branch of mathematics is often so artificial
that it is meaningless. No example is more pertinent than the deductive de-
velopment of the real number system. There were good reasons to axiomatize
the number system, but the introduction of fractions and negative numbers as
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couples with special definitions of the operations with these couples and the
introduction of the irrationals by Cantor sequences or Dedekind cuts, clever as
they may be, are so artificial, trumped-up and foreign to the intuitive meaning
and uses of these numbers as to preclude understanding.

In such developments —2 is often introduced as the number which when
added to 2 gives 0 or, as the modern mathematics texts put it, —2 is the unique
additive inverse to 2. Such a definition induces no more understanding of —2
than the statement, anti-matter is that which added to matter produces a
vacuum, gives any understanding of anti-matter. One doesn’t learn even about
dogs from a definition of dogs.

Poincaré makes this point too [9]. “In becoming rigorous mathematical
science assumes a character so artificial as to strike every one. It forgets its
historical origing; we see how the questions can be answered, but we no longer
see how and why they were put.”

Poincaré also notes [12] that in building up the number system from the
integers there are many different constructions one can make. Why do we take
one rather than another? “The choice is guided by the recollection of the
intuitive notion in which this construction took place; without this recollection,
the choice appears unjustified. But to understand a theory it is not sufficient
to show that the path that one follows does not present obstacles; it is necessary
to take account of the reasons that one chooses that path. Can one ever under-
stand a theory if one builds it up right from the start in the definitive form that
rigorous logic imposes, without some indications of the attempts which led to
it? No; one does not really understand it; one cannot even retain it or one re-
tains it only by learning it by heart.”

Many teachérs might retort that the student has already learned the intui-
tive facts about the number system and is now ready for the appreciation of the
deductive version, which exemplifies mathematics. If the student really under-
stands the number system intuitively the logical development will not only not
enhance his understanding but will destroy it. As an example of mathematical
structure no poorer choice could be made because the construction is so con-
trived. The development is so full of details and so stilted that it not only stulti-
fies the mind but obscures the real ideas. Yet just this topic has now become the
chief one in high school and college mathematics courses.

Actually this deductive approach is even misleading. In extending the
number system from the natural numbers to the various other types we insist
that the commutative and associative properties of the operations be retained.
Why do we insist on these properties? We teachers know that the uses of the
numbers call for these properties but the student gets the impression that
these are necessary properties of all mathematical quantities. Why then do we
not extend the order properties to complex nhumbers and the commutative
property to matrices? The logical approach gives the student an entirely false
impression of how mathematics develops.

The insistence on a deductive approach deceives the student in another
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way. He is led to believe that mathematics is created by geniuses who start
with axioms and reason directly from the axioms to the theorems. The student
feels humbled and baffled, but the obliging teacher is fully prepared to demon-
strate genius in action. Perhaps most of us do not need to be told how mathe-
matics is created but it may help to listen to the words of Felix Klein [3]. “You
can often hear from non-mathematicians, especially from philosophers, that
mathematics consists exclusively in drawing conclusions from clearly stated
premises; and that in this process, it makes no difference what these premises
signify, whether they are true or false, provided only that they do not contradict
one another. But a person who has done productive mathematical work will
talk quite differently. In fact those people are thinking only of the crystallized
form into which finished mathematical theories are finally cast. The investigator
himself, however, in mathematics as in every other science, does not work in
this rigorous deductive fashion. On the contrary, he makes essential use of his
imagination and proceeds inductively aided by heuristic expedients. One can
give numerous examples of mathematicians who have discovered theorems of
the greatest importance which they were unable to prove. Should one then
refuse to recognize this as a great accomplishment and in deference to the above
definition insist that this is not mathematics? After all it is an arbitrary thing
how the word is to be used, but no judgment of value can deny that the induc-
tive work of the person who first announces the theorem is at least as valuable
as the deductive work of the one who first proves it. For both are equally neces-
sary, and the discovery is the presupposition of the later conclusion.”

The deductive approach produces practical complications. If a student has
to show, for example, that 4ab(ab-+3ac) =4a2b?-+12.a%c and if he has to justify
each step, he will have to think carefully and give reasons for so many steps
that he will take minutes to do what he should do almost automatically on the
basis of experience with numbers. It is far preferable that the student should
become so familiar with the basic properties such as distributivity, commuta-
tivity and associativity that he does not realize he is using them. Likewise
many students of calculus have learned (by heart) the proof that a continuous
function on a closed interval has a maximum and a minimum but cannot find
the maxima and the minima of simple functions.

We should be grateful that students accept unquestioningly facts that seem
entirely reasonable to them whether on the basis of experience with numbers or
intuitive arguments. In fact we should do all we can to make the elementary
operations so habitual that students do not have to think about them any more
than one thinks when he ties his shoelaces. If students do not see readily that
3-x=x-3, it is not because they lack familiarity with the commutative principle
but rather because they fail to understand that x is just a number. (Of course,
one should say, x is a placeholder for a number.) When the time to teach a
noncommutative operation arrives, then commutativity can be stressed.

The need to make some of the work automatic was stressed by a man who
certainly understood the role of axiomatics. Alfred North Whitehead says
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[15], “It is a profoundly erroneous truism, repeated by all copybooks, and by
eminent people when they are making speeches, that we should cultivate the
habit of thinking of what we are doing. The precise opposite is the case. Civiliza-
tion advances by extending the number of important operations which we can
perform without thinking about them. Operations of thought are like cavalry
charges in a battle—they are strictly limited in number, they require fresh
horses and must only be made at decisive moments.”

Modern texts are not content just to present mathematics deductively. They
incorporate the rigor that meets the professional’s standards. Thus the deduc-
tive approach to geometry now requires that the axioms overlooked by Euclid,
the order axioms for example, be included to justify the steps. The conse-
quence is that a host of trivial theorems must be proved before one reaches the
significant ones. Thus the student must prove that there is a unique midpoint
for each line segment and that there is an inside and an outside of a triangle.
Even worse is the fact that many of the theorems are more obvious than the
axioms used to establish them. Hence, the less obvious is used to prove the more
obvious. But as far as the student is concerned the whole point of proof is just
the reverse. Students will question what is being accomplished and perhaps even
wonder whether we teachers are sane. That for two thousand years Euclidean
geometry, as formulated by the presumably careless or naive Euclid, was re-
garded by the best mathematicians as the paradigm of rigor, bears no weight
with the advocates of precise axiomatics. Today’s students, we are apparently
supposed to believe, are sharper and will not be satisfied with proofs that fail
to mention details whose absence no one noticed for so many centuries.

Poincaré struck at this very folly [12]. “When a student commences seri-
ously to study mathematics, he believes he knows what a fraction is, what
continuity is, and what the area of a curved surface is; he considers as evident,
for example, that a continuous function cannot change its sign without vanish-
ing. If, without any preparation, you say to him: No, that is not at all evident;
I must demonstrate it to you; and if the demonstration rests on premises which
do not appear to him more evident than the conclusion, what would this un-
fortunate student think? He will think that the science of mathematics is only
an arbitrary accumulation of useless subtleties; either he will be disgusted with
it or he will amuse himself with it as a game and arrive at a state of mind
analogous to that of the Greek sophists.”

The rigorous approach requires such a multitude of minor theorems that the
larger features of the subject fail to stand out. As Poincaré put it [10], “In the
edifices built up by our masters, of what use is it to admire the work of the
mason if we cannot comprehend the plan of the architect? Now pure logic can-
not give us the appreciation of the total effect; this we must ask of the in-
tuition.”

In many areas the present emphasis on the logical approach is sheer hypoc-
risy. What mathematician uses the logical development of the complex number
system to justify his operations with real or complex numbers? Yet this is what
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is taught to students as the way to learn the “truth” about numbers. How
many mathematicians have ever satisfied themselves that +/2¥3 is defined in
the theory of irrational numbers or even that +/2+/3=+/31/2? How many
have ever worked through a rigorous development of Euclidean geometry (as
opposed to the pseudo-rigorous developments found in modern texts)? Felix
Klein did not hestitate to admit [5], “To follow a geometrical argument purely
logically without having the figure on which the argument bears constantly
before me is for me impossible.”

As a matter of fact the attempt to be completely deductive ensnares the
teacher in a trap. It is often necessary to include a proof which even the rigor-
oriented teachers concede to be too difficult for the student, such as the proof
of the formula for the area of a circle in plane geometry. Many texts evade the
issue by adopting an axiom. As a consequence numerous elementary geometry
texts contain as many as 70 or 80 axioms. Surely if one can adopt axioms at
will there is no need to prove anything. The only lesson the student will learn
from such presentations is that if he is stuck he can adopt an axiom. The
mathematics teacher can no more afford to be profligate with axioms than to be
parsimonious. Likewise in the presentation of the real number system the high
school texts proceed axiomatically from the natural numbers. But when they
get to the irrational numbers, whose logical development the authors recognize
to be too difficult for the student, they resort to the number line and speak of
points which have no numbers assigned to them. These are designated by the
irrational numbers. If the logical presentation of the rational numbers had any
value it is dissipated by this meaningless introduction of the irrationals.

One of the gravest defects in the teaching of mathematics is the lack of
motivation. Mathematics proper, as Weyl described it, has the inhuman quality
of starlight, brilliant and sharp, but cold. Consequently very few students are at-
tracted to the subject. In fact most of those taking high school and college
mathematics do so because it is required or because they are prospective
scientists or engineers. These students would prefer to learn more about the
fruits than the roots of mathematics. Proper pedagogy requires that these
students be shown why they should be studying particular topics and subjects.
To assure them that the material will prove useful at some later time is hardly
an incentive to take it seriously. The mathematician or the rare student who
finds intellectual challenge or aesthetic satisfactions in the subject may be
intrigued to learn that there are only five regular polyhedra. But very few
students are excited by this fact. As far as they are concerned the world would
be just as well off if there were an infinite number of them. As a matter of fact
there is an infinite number of regular polygons and no one seems depressed by
this fact.

Although the subject of motivation is a vast one its relevance here is simply
that it is relatively easy to give a genuine or significant motivation to a mathe-
matical topic when this is introduced intuitively or heuristically because his-
torically there were significant motivations, whereas it is very difficult to do so
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in a logical presentation because the latter is many stages removed from reality
and, as we have already pointed out, is often artificial. How does one motivate the
concept of a fraction when it is to be introduced as an ordered couple of natural
numbers? How can a student see the point of the ¢—4§ definition of continuity
if this is his introduction to the concept? In fact the logical approach often
destroys the motivation. One may motivate the integral as the method of finding
the area under a curve. But if one defines the area as an integral one begs the
whole question of doing something significant with the integral.

Many texts and teachers claim that they do provide motivation even for a
logical approach. Thus they “motivate” the introduction of negative, irrational
and complex numbers by stating that we wish to solve equations such as
x2+2 =0. But for students who have no reason to solve even x —2 =0, the chal-
lenge of solving %242 =0 certainly isn’t exciting. Moreover, the bright student
can come back at the teacher and ask, “Why can’t we solve 5/x=0 by intro-
ducing « as a number?” If we can invent definitions to operate with v/ —2,
we can invent definitions to operate with .

The presentation of theorems without the motivation robs the student of
insight. Even on the somewhat advanced level where we deal with students who
have some leaning toward mathematics, to present theorems without the
motivation, whether it does or does not kill off the interest in mathematics,
certainly leaves them with no more than a meaningless collection of theorems
and proofs and without the power to think for themselves. Thus in linear alge-
bra texts the subject of eigenvalues of matrices is always treated. I have not
found one text which indicates why one wants to learn anything about the
eigenvalues. The simultaneous reduction of two quadratic forms to sums of
squares is another seemingly meaningless topic. At least the origin in mechanical
problems might be suggested. Equivalent, congruent, and similar matrices are
treated for no apparent reason. (See the article by R. J. Jarvis: A Case for
Applications of Linear Algebra and Group Theory, this MoNTHLY, 73, 1966,
654-656.)

5. The Role of Logic in Pedagogy. In view of the many pedagogical short-
comings in the logical approach to mathematics it is not surprising that many
perceptive mathematicians (there are nonperceptive ones) have spoken out
against the logical approach. Descartes deprecated logic in rather severe lan-
guage. “I found that, as for Logic, its syllogisms and the majority of its other
precepts are useful rather in the communication of what we already know
or . .. in speaking without judgment about things of which one is ignorant.”
Roger Bacon said, “Argument concludes a question but it does not make us feel
certain, or acquiesce in the contemplation of a truth, except the truth also be
found to be so by experience.” Pascal pointed out that “Reason is the slow and
tortuous method by which those who do not understand the truth discover it.”

Is there then no role for logic or proof? Should it be rejected all together?
Not at all. The first approach to any subject should indeed be intuitive. As
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Poincaré put it [9], “I have already had occasion to insist on the place intuition
should hold in the teaching of the mathematical sciences. Without it young
minds could not make a beginning in the understanding of mathematics; they
could not learn to love it and would see in it only a vain logomachy; above all
without intuition they would never become capable of applying mathe-
matics. . . .

“We need a faculty which makes us see the end from afar and intuition is
this faculty.”

Proof should enter but only gradually. Moreover, the level of rigor must be
suited to the level of the student’s mathematical development. The proof need
only convince the student. The capacity to appreciate rigor is a function of
the mathematical age of the student and not of the age of mathematics. This
appreciation is acquired gradually, and the student must have the same freedom
to make intuitive leaps that the mathematicians had. Rigor will not refine an
intuition that has not been allowed to function freely. Proofs of whatever
nature should be invoked only where the students think they are required. A
proof is meaningful when it answers doubts. Felix Klein has stressed this
point [6]: “It is my opinion that in teaching it is not only admissible, but
absolutely necessary, to be less abstract at the start, to have constant regard for
applications, and to refer to the refinements only gradually as the student be-
comes able to understand them. This is, of course, nothing but a universal
pedagogical principle to be observed in all mathematical instruction.” As
Professor Max M. Schiffer of Stanford University has stated it, “Never put
logical carts before heuristic horses.”

The level of -rigor can, of course, be advanced as the student progresses.
Poincaré makes this point too [12]. “On the other hand, when he is more
advanced, when he becomes familiar with mathematical reasoning and his mind
will be matured by this very experience, the doubts will be born of themselves
and then your demonstration will be well received. It will awaken new doubts
and the questions will arise successively to the child as they arose successively
to our fathers to the point where only perfect rigor can satisfy him. It is not
sufficient to doubt everything; it is necessary to know why one doubts.”

6. Why is the Deductive Approach Favored? Despite the pedagogical defects
of the deductive approach, the criticisms of big mathematicians, and the claims
of many mathematicians that they do teach discovery, the prevailing practice,
if I may judge from the textbooks and hundreds of talks with professors, is to
present mathematics rigorously and to emphasize the axiomatic method. In-
deed this is the essence of the so-called reform known as “modern mathe-
matics” or the “new mathematics.” Why do teachers use this approach?

There is no doubt that some teachers actually believe that the axiomatic
deductive presentation is the essence of mathematics. Whether they acquired
this limited view through the instruction they themselves received or have
been induced to adopt it because the textbooks now favor it, they are at least
sincere if not effective pedagogues. One has the sneaking suspicion that a few
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teachers enjoy presenting the familiar number system in the recondite axiomatic
form because they understand the simple mathematics it represents and yet
can appear to be presenting profound mathematics. Certainly much of the rigor
in modern texts comes from limited men who seek to conceal shallowness by
giving a facade of profundity to the obvious and from pedants who mask their
pedantry under the guise of rigor.

Many young teachers believe that now that we have the correct, polished ver-
sion of mathematics it is sufficient to give the axiomatic or rigorous approach and
that students will absorb it. These very same teachers would have been swamped
by such a presentation but having learned the correct version they can no longer
recall and appreciate the difficulties they encountered in learning the rigorous
versions.

Some teachers, knowing the rigorous proofs, feel uneasy about presenting
a convincing argument which they, at least, know is incomplete. But it is not
the teacher who is to be satisfied ; it is the student. Good pedagogy demands such
compromises.

Other teachers want to give students the whole truth at once so that they
should not have to unlearn what they once learned. But one cannot teach even
English or History by starting at the top. The A that a high school student might
earn for an English composition would most likely be rated C at the college
level.

For whatever reason teachers insist on presenting to young people a modern
rigorous proof they are deceiving themselves. There is no ultimate rigorous
proof. This fact derives from the very way in which mathematics develops.
Felix Klein has described it [4]: “In fact, mathematics has grown like a tree,
which does not start at its tiniest rootlets and grow merely upward, but rather
sends its roots deeper and deeper at the same time and rate that its branches
and leaves are spreading upward. . . . We see, then, that as regards the funda-
mental investigations in mathematics, there is no final ending, and therefore on the
other hand, no first beginning, which could offer an absolute basis for instruction.”
Poincaré expressed a similar view. There are no solved problems; there are only
problems that are more or less solved. Mathematics is as correct as human
beings are and humans are fallible.

At no time in the history of mathematics have we been less certain of what
rigor is. Hence no proof is really complete, and the teacher must compromise in
any case. It would be interesting to know how many teachers are aware that
set theory, which they now regard as the indispensable beginning to any rigor-
ous approach to mathematics, has been the source of our deepest and thus far
insuperable logical difficulties [16]. Those who are not aware of the founda-
tional problems might at least note the words of Hermann Weyl [14]: “The
question of the ultimate foundations and the ultimate meaning of mathematics
remains open; we do not know in what direction it will find its final solution
nor even whether a final objective answer can be expected at all. ‘Mathematizing’
may well be a creative activity of man, like language or music, of primary
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originality, whose historical decisions defy complete objective rationalization.”

Many teachers favor a logical presentation, particularly, an abstract one,
such as group theory, because it is supposed to be efficient. They are under the
impression that if a student is taught abstract groups he will in one swoop learn
the properties of the rational, real and complex numbers, matrices, congru-
ences, transformations and other topics. But of course a student who learns
group theory could not on this basis add fractions. Nor does offering an example
or two of a group save the day. The concrete cases must be thoroughly under-
stood before one introduces an abstract development which unifies several con-
crete ones. To introduce as examples concrete material which is as yet un-
familiar to the student is of no help at all in making the abstract notion clearer.
In every case learning proceeds from the concrete to the abstract and not vice
versa.

However, the major reason for the popularity of the axiomatic rigorous
approach is that it is easier to teach. The entire body of material is laid out in
a clear, clean-cut sequence and all the teacher has to do is repeat it. He has but
to offer a canned body of material. I have heard teachers complain that many
students, particularly engineers, wish to be told how to perform the processes
they are asked to learn and then want to hand back the processes. But the
teachers who teach the logical presentation because it avoids such difficulties as
teaching discovery, leading students to participate in a constructive process,
explaining the reasons for proceeding one way rather than another, and finding
convincing arguments, are more reprehensible than the students who wish to
avoid thinking and prefer just to repeat mechanically learned processes.
Postulating properties has the advantage, as Bertrand Russell put it, of theft
over honest toil. Pedagogically it is worse because the theft produces no gain
in understanding. The logical approach to teaching is reminiscent of a reply
that Samuel Johnson gave to a man who asked Johnson for further explanation
of some argument he had given. Johnson barked, “I have found you an argu-
ment but I am not obliged to find you an understanding.”

Many of us know the story of the professor who was presenting a logical
proof to his class, got stuck in the course of the proof, went over to the corner
of the blackboard where he drew some pictures, erased the pictures, and then
continued the proof. Whether the import of this story for pedagogy has been
noted is doubtful.

Many mathematicians prefer to present rigorous axiomatic approaches
which, for example, use a minimal set of axioms, because they favor their own
professional interest at the expense of the student. Even if such systems can be
made understandable to young people the time required to teach them could be
spent on more significant material. In this matter as well as in presenting
sophisticated rigorous proofs they are using the classroom to challenge them-
selves. These professors are serving themselves rather than the students not
only in the form in which they present the various subjects but also in the pre-
mature teaching of abstractions such as abstract algebraic concepts, linear
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vector spaces, finite geometries, set theory, symbolic logic and functional
analysis, because these subjects lend themselves to axiomatic treatments. Is it
any wonder that students become alienated and question the relevance of what
they are being taught?

There are many indications that professors who present rigorous material
are really uncertain as to the wisdom of doing so. A number of calculus books
begin with rigorous definitions and theorems, for example, those concerning
limits and continuity, and then never refer to this material. Thereafter they use
the cookbook presentation. The most charitable view of such books is that the
authors wish to ease their own consciences or to give the students some idea of
what rigor means. Perhaps an unfairly severe view is that these books offer only
a pretense of rigor in order to appeal to both markets, the one that demands
rigor and the one that is satisfied to teach mechanical procedures.

Other texts adopt another “compromise.” In the body of the text the pre-
sentation is mechanical with perhaps an occasional condescension to an intuitive
explanation. The real “explanation” is given in rigorous proofs but these are put
in appendices and presented so compactly that they are certain to be totally
ununderstandable to the student. However, the authors have salved their con-
sciences. Such books are no different from the old mechanical presentations.
They do contribute to understanding in one respect, namely, they show that
competent mathematicians are inept in pedagogy.

Perhaps, after all, there is some merit to the logical approach to mathe-
matics. It has been said of rigor that “The virtue of a logical proof is not that it
compels belief but that it suggests doubts and the proof tells us where to con-
centrate our doubts.” Or as Bertrand Russell put it [13], “It is one of the chief
merits of proofs that they instill a certain scepticism as to the result proved.”
Lebesgue pointed out another value of rigorous proof [7]. “Logic makes us
reject certain arguments but it cannot make us believe any argument.” One
must respect but suspect mathematical proofs. Since one of the main objectives
of mathematics education is to instill scepticism in the student, he is deriving at
least one benefit from the current logical extravaganzas.
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A COROLLARY TO THE GELFAND-MAZUR THEOREM

H. A. SEIp, University of California, Irvine

We wish to establish the following result as a corollary to the Gelfand-
Mazur Theorem:

Let A0 be a complex commutative normed algebra such that ||xy|| =||x|l ||y||
for all x, yEA. Then A is isomorphic and isometric to the complex field.

Note that there is no assumption that 4 contains an identity. In fact the
major important step in the construction of the proof is to demonstrate that
under the given norm condition on A, the algebra has an identity. (If 4 were
assumed to have an identity, then the above corollary would merely be a special
case of a well-known result which appears in the literature. See for example
[3, Cor. 1.7.3, p. 39]. Also under the assumption of an identity in 4, Lorch has
a proof of the above corollary [1, Th. 5-2, p. 129].)

We shall use an algebraic approach to allow us to demonstrate the existence
of the identity in A. To obtain the result, the Gelfand-Mazur Theorem will be
applied. The conclusion of the corollary follows directly.

Proof. By the norm condition, 4 has no zero divisors. Let S=4 — {0}. Let
T= {(a, s) | aEA, s&S } . As in Herstein [2, pp. 101-103] define an equivalence
relation ~ on T as follows: (a, s)~(a1, s1) if and only if sija =sa;. Denote the
equivalence class of (@, s) by a/s. We define $-14 = {a/sl (a, s)ET}. Then
S—14 is the field of quotients of 4 under operations +,-, now to be defined. Let
a/s, a/s1ES14.

1) a/s + ay/s1 = (s1a0 + sa1)/ss
) (a/s)(a1/s1) = aay/ssy = ara/s1s = (a1/s1)-(a/s).
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