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Understanding Connections between 
Equations and Graphs

Eric J. Knuth

eneral consensus holds within the mathematics-
education research community that functions are
among the most important unifying ideas in mathe-
matics (Romberg, Carpenter, and Fennema 1993). In
fact, “it can be argued that functions form the single
most important idea in all of mathematics, at least
in terms of understanding the subject as well as for
using it” (Dubinsky 1993, 527). Further, the intro-
duction of algebraic and graphical representations
of functions can be seen as a crucial moment in
mathematics learning and represents “one of the
earliest points in mathematics at which a student
uses one symbolic system to expand and understand
another” (Leinhardt, Zaslavsky, and Stein 1990, 2). 

Recognizing the important role that multiple
representations of functions play in students’ math-
ematical development, the National Council of
Teachers of Mathematics emphasizes that students
should be able to “translate among tabular, symbol-
ic, and graphical representations of functions”
(NCTM 1989, 154). Leading researchers in mathe-
matics education have also acknowledged the sig-
nificance of multiple representations in secondary
school mathematics, identifying the notion as one of
the “big ideas” of algebra (Lacampagne, Blair, and
Kaput 1995). Because of recent reform initiatives—
initiatives that call for schools to implement alge-
bra for all students—their status has been elevated
even further (NCTM 1994). Even with the recog-
nized importance of multiple representations in
secondary school mathematics, many students
leave high school without understanding the con-
nections among these representations (Blume and
Heckman 1997).

The twofold goal of this article is (1) to present
results from a study that examined students’
understanding of connections between algebraic
and graphical representations of functions, that is,
equations and graphs; and (2) to discuss a possible
reason for the inadequate, and often absent, con-
nections that students made between them. The
study grew out of my concern about my own first-
year-algebra students’ understandings of the con-
nections between different representations of func-

tions. As I learned more about the nature of my
students’ understanding in this domain through
classroom discourse and various assessment instru-
ments, I began to realize that many of them had
limited understanding of the connections, particu-
larly connections between equations and their
graphs. Consequently, I decided to see whether my
discoveries about my own students might also be
true of other high school mathematics students.

THE STUDY
The 284 students who participated in this study
attended a large suburban high school and were
taking college-preparatory mathematics courses
ranging from first-year algebra through Advanced
Placement calculus. Each student was asked one of
ten different questions, that is, in a class of thirty,
three students received the same question. Students
were asked to write a response in which they showed
their work and explained their thinking. The teacher
presented the questions at the beginning of class as
a warm-up—part of each participating teacher’s
regular instructional practice—and students were
given ten minutes to work on the question. In addi-
tion, to ensure that the requisite concepts had been
covered, especially for first-year-algebra students,
the study was conducted during spring semester.

The questions for this study were designed to
foster insight into students’ understandings of con-
nections between equations and graphs. All the
problems, with one exception, addressed only linear
functions. The rationale for this limitation on the
types of functions is that representations of linear
functions are a major topic of study in first-year
algebra—often the only type of function studied—
and their study sets the stage for more advanced
work in school mathematics. Thus, the study
focused on an area in which all students had expe-
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rience and in which all should have understood the
fundamentals. Five of the ten questions in particu-
lar were designed to elicit the students’ under-
standings of a fundamental connection—a point
satisfies an equation if and only if the point is on
the graph of the equation. Those five questions are
the focus of this article. The remaining questions
did not focus explicitly on this connection, and stu-
dents’ responses are not discussed in this article.

Each of the five questions discussed in this article
gave students both an equation and a corresponding
graph. For example, question 3 asked students how
they would solve an equation that had a missing
coefficient. See figure 3. Students could answer the
question by using either representation; yet per-
haps the easiest response was to state that select-
ing any point on the graph would give a solution, as
opposed to first determining the missing coefficient,
then substituting a value into the equation for one
of the variables, and finally solving for the remain-
ing variable. Students were also asked to furnish
an alternative solution method, for example, using
the equation instead of the graph, where applicable. 

Although the two representations are informa-
tionally equivalent, that is, the information avail-
able from one representation can be inferred from
the other, and vice versa, the two representations
are not computationally equivalent (Larkin and
Simon 1987). Consequently, the representations dif-
fer in their solution efficiency: the graphical repre-
sentation explicitly provides information—displays
an infinite number of points—that is given only
implicitly in the algebraic representation, in which
points must be found computationally. I hypothe-
sized that if students understood this connection,
then they would tend to select the more efficient,
and often easier, solution strategy, which for this
series of questions entailed using the graphical rep-
resentation.

I classified students’ responses into two categories:
algebraic solution methods and graphical solution
methods. Responses in which the equation was the
primary means for finding a solution were catego-
rized as algebraic solution methods, whereas
responses that explicitly used the graph were cate-
gorized as graphical solution methods. In some
instances, a student used the graph in the solution
only to support an algebraic approach; such an
approach was categorized as an algebraic solution
method. After I classified each student’s response
within a course, for example, geometry, I aggregat-
ed all responses and recorded the result as an over-
all percent on the basis of the solution method used.

RESULTS
Question 1
Students could solve the first question (see fig. 1) by
using either representation, although the graph did

not require any calculation. Students could simply
read the coordinates of any point from the line. In
addition, the form of the equation was one that is
not typically used, and the coefficients and constant
term were not integers. Mentally determining a
solution was therefore more difficult. The rationale
for this nontypical format was that it led students
away from the traditionally emphasized procedure
of substituting a value for one variable into the
equation and then solving for the other. 

Student responses (n = 30) to part 1(a) indicated
an overwhelming reliance on the algebraic repre-
sentation; all but one of the students used the equa-
tion in some manner in finding a solution. The follow-
ing response, from a first-year-algebra student, was
typical: “First I would put the equation in slope-
intercept form [often the form most commonly
emphasized during instruction], which would solve
for y. Then I would substitute into the equation a
value for x and then solve the new equation for y.”
An honors second-year-algebra student’s method
involved selecting an x-value from the graph, sub-
stituting that value into the equation, and then
solving the resulting equation for y. Although the
method produced a correct solution, that student
evidently failed to fully recognize the connection
between a point on the line and a solution to the
equation—solving for the y-value should have yield-
ed the same value as the y-coordinate of the initial-
ly selected point.
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Fig. 1
An equation given in “nontypical” form

Part (b) asked students to use a different method
than the one that they used in part (a). Surprising-
ly, only 17 percent of the students could give an
alternative solution method; thus for the majority
of students, the graph appeared to be unnecessary

Question 1
Given an equation 3.2y + 5.1x = –7.5 and its graph
shown below
a) Explain how you could find a solution to this

equation.
b) Could you find a solution by using a method

other than the one you used in part (a)? Explain
your answer.
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or even irrelevant in finding a solution. Only three
students suggested finding a solution by using the
coordinates of any point on the line. The other two
students who offered an alternative solution
method but had not used a graphical approach sug-
gested writing the equation in a form other than
slope-intercept and then using this new equation to
solve for x and y. Of those students who apparently
could not think of another method, five left the
question blank, ten responded no, and the remain-
ing ten gave such inappropriate responses as the
following, furnished by a second-year-algebra stu-
dent: “You can use the addition/multiplication or
substitution methods to find where the graph cross-
es the x-axis.” 

The failure of so many students to think of an
alternative method suggested that many of them
lacked a crucial connection concerning equations
and graphs. However, in the students’ defense for
both parts (a) and (b), having nonintegral coefficients
might have suggested to the students that they
needed a level of precision that they could not attain
by reading the coordinates of a point from the
graph, and as a result, they did not perceive that a
graphical solution method was valid. Perhaps even
more alarming though, given the level of many of
these students, was the number of responses that
did not make any sense mathematically.

Question 2
Thirty-eight students responded to the second ques-
tion (see fig. 2)—a question that could also be
solved using either representation; however, a
graphical solution was easier. The previous ques-
tion asked students how they might determine a
solution in general, whereas a particular point was
identified as a possible solution to this problem. In
part (a), only 47 percent of the students responded
that any point on the parabola would satisfy the
equation. Typical responses included, “Yes. All
points on a parabola are a solution to the equation,”
from a second-year-algebra student, and “Yes, all
points on [the] parabola are solutions,” from a
geometry student. Other correct responses, catego-
rized as using algebraic solution methods, included
those from students who may have recognized the
relationship between the equation and its graph
but thought that they had to verify the coordinates
of the point by substituting the coordinates into the
equation. 

Interestingly, a number of students who used
this algebraic method responded that the point was
not a solution because the approximate coordinate
values that they selected did not satisfy the equa-
tion. Apparently, for these students, the fact that
the point was on the parabola was not enough to
convince them that it was indeed a solution. Other
incorrect responses included those from students

who had evidently confused a process for determin-
ing the roots of a quadratic equation with the ques-
tion posed; for example, one second-year-algebra
student stated “No, because the solution would
have to cross the x-axis, and it doesn’t” and a first-
year-algebra student incorrectly factored the qua-
dratic as (x – 2)(x + 1) = 0 and answered “No, not
part of quadratic equation.”

Since less than half the students seemed to rec-
ognize the relationship between the graph and the
equation in part (a), not surprisingly did only 
11 percent of the students’ responses for part (b)
describe a method that used the graph. The majori-
ty of students substituted 2.5 into the equation to
determine y, as opposed to reading an approximate
y-coordinate directly from the graph. Three of the
four students who actually used the graph were cal-
culus students, whereas the fourth student, an hon-
ors second-year-algebra student, solved for y alge-
braically but then mentioned, “You can also look at
the graph and estimate.” Although the majority of
students did not give responses indicating that the
point is a solution because it is on the curve for part
(a), the nature of the question may have led the
students to believe that they needed to empirically
verify the point as a solution. However, in part (b),
assuming that the students would have been led to
use the graph seemed just as reasonable, given that
only an approximate value was required for an
answer. An overwhelming majority of the students,
including many of those who responded appropri-
ately in part (a), still relied on an algebraic
approach in finding the approximate y-value.

Question 3
The third question (see fig. 3) was similar in design
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Fig. 2
The graph does not give an exact value.

Question 2
Given an equation y = x2 – 2x – 1 and its graph
shown below
a) Is the point shown by the arrow a solution to the

equation? Explain your answer.
b) If the value of x is approximately 2.5, what is the

approximate value for y? Explain your answer.
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to 1(a), but the coefficient of x was missing. This
missing coefficient was irrelevant if a graphical
method was used to solve the problem, but it was
essential if the solution used an algebraic method.
Only a fifth of the thirty-five students responded
that finding a solution without the missing coefficient
was possible, although the most obvious response
was that the coordinates of any point on the graph
would yield a solution. The following response from
a precalculus student was representative of those
from students who thought that solving the problem
was possible: “Any point on the curve can solve the
equation.” Typical responses from students who
thought that solving the problem was impossible
included a first-year-algebra student’s “No, you need
all parts of the equation before finding a solution”
and a response of “No, it is not possible to find a
solution until you find the missing value” from a
precalculus student. Evidently, the majority of stu-
dents did not perceive that the graph had any rele-
vant information that would directly contribute to
finding a solution. Rather, students needed the
equation to be complete to determine a solution.
That result was not surprising, given the number of
students who used an algebraic approach on the
other questions.

selected the former method, whereas only three
students used the latter method. Other students
described an incorrect method. Ironically, a number
of students responded to part (a) by stating that
finding a solution was impossible without the miss-
ing coefficient; however, these same students re-
sponded to part (b) by stating that using the graph
would allow them to find the missing coefficient. In
other words, these students could find the missing
coefficient by either calculating the slope of the line—
a calculation that involved using the graph to iden-
tify two sets of ordered pairs, both of which were
solutions—or selecting points from the graph—
points whose coordinates satisfied the equation—to
substitute into the equation. Presumably, these stu-
dents did not recognize that the procedures that
they used relied on the fact that any point on a line
is a solution to the equation of the line.

Question 4
The fourth question (see fig. 4) required that stu-
dents match one of three equations to a correspond-
ing graph. The equations were in standard form
rather than slope-intercept form, and both the x-
and y-intercepts of the given line were integers. I
expected that the students would determine the
correct equation of the line by using the relatively
simple procedure of substituting the coordinates of
the intercepts into each equation instead of the
more lengthy procedure of converting each equation
into slope-intercept form, using the graph to calcu-
late the slope and to identify the y-intercept, and
then comparing the slope and intercept with the
corresponding parameters of the converted equa-
tions. However, seventeen students out of the nine-
teen used the latter procedure to arrive at a solu-
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Fig. 3
The graph supports students’ 

algebraic manipulations.

Students solved part (b) primarily in two ways:
(1) rewriting the equation in slope-intercept form
and using the slope found from the graph to find the
missing coefficient; or (2) substituting an x-value
and its corresponding y-value, both found from the
graph, into the equation and solving for the missing
coefficient. Seventy-five percent of the students
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Fig. 4
Students convert the given equations into

slope-intercept form.

Question 3
The graph below represents the equation ?x + 3y =
–6. We do not know the value of the coefficient of x.
a) Is it possible to find a solution to the equation

without the missing coefficient? Explain your
answer.

b) How could you find the missing coefficient?
Explain your answer.

Question 4
Given the equations 6x + 3y = 6, –4x + 2y = 4, and
–5x + 2y = 4
a) Which equation is represented by the graph

shown below?
b) Explain how you decided on your answer in part

(a).
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tion. A typical response, from a precalculus stu-
dent, was “I set the equations in y = mx + b form
and then saw which equation matched the graph.”
The two students who did not convert the equation
into slope-intercept form chose the former method:
“I plotted [i.e., substituted] x-values on the graph
into the equation and determined if the y-value was
correct as compared with the graph,” said a pre-
calculus student. Again, much like students’
responses to the other questions, students chose a
more involved algebraic method over a somewhat
less involved graphical method.

Question 5
The equation in the last question (see fig. 5) was in
slope-intercept form, the form with which the stu-
dents were most familiar from both instruction and
practice. They could find the correct answer either
by substituting y = 9 into the equation and solving
for x or by reading the x-coordinate directly from
the graph. In part (a), 70 percent of the twenty-two
students solved the problem algebraically. Of those
students, only 27 percent used the graph as their
alternative solution method. Other students, also
approaching part (a) algebraically, used alternative
solution methods that were incomplete or incorrect.
For example, a geometry student stated, “You can
use the y-intercept or the slope of the line to find x,”
and a first-year-algebra student commented that x
could be found “by using the distance formula.” In
addition, all seven of the students who answered
part (a) by using a graphical approach could sug-
gest an alternative solution method—a method that
used the equation.

DISCUSSION OF RESULTS
Many mathematics educators would consider these
questions to be routine exercises, exercises that
students should not have had any difficulty answer-
ing appropriately by using either representation.
Accordingly, little instructional time, other than the
initial introduction and subsequent practice in
first-year algebra, is spent on the aforementioned
connection. After students have been exposed to
this connection, teachers generally assume that lit-
tle or no review is needed (Schoenfeld, Smith, and
Arcavi 1993). The findings of this study suggest
otherwise. The results are particularly distressing
considering that more than half the students tested
were enrolled in second-year algebra and above—a
population often thought to be representative of our
best mathematics students.

The nature of the instruction that students
receive, in both the representations that are
emphasized and the kinds of translation tasks that
are presented, may significantly contribute to the
difficulties that many students have in connecting
equations and graphs. In the former situation, diffi-
culties are related to curricular and instructional
emphases in secondary school mathematics. “The
nature of the algebra curriculum is such that the
problems we offer students are for the most part
limited to those problems that can be readily solved
within the framework of symbolic representations
alone. As a result, visual representation is not per-
ceived as necessary by most students when engaged
in mathematics problem solving” (Yerushalmy and
Schwartz 1993, 43). The data certainly seem to sup-
port this conclusion: the questions in the study
were designed to encourage a graphical solution
method, but the students’ responses illustrated an
overwhelming reliance on algebraic solution meth-
ods, often at the expense of, and with apparent
unawareness of, a simpler graphical solution
method. Further, many students seemed to perceive
that the graph was unnecessary or that it served
only to support their algebraic solution methods
rather than be a means to a solution in and of
itself.

In addition, many students seem to have devel-
oped a ritualistic procedure for solving problems of
the type presented in this study. Traditionally,
beginning in first-year algebra, students are intro-
duced to the slope-intercept form of an equation,
and it remains the predominant form throughout
their work with linear functions. In fact, when
equations are given in a different form, students
are often instructed to change them into slope-
intercept form. This tendency was certainly evident
in a majority of students’ responses to several of the
questions—for example, 1, 3, and 4—questions
that should have led students away from an alge-
braic solution method. Even in their successful use
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Fig. 5
An equation given in a more 

recognizable form

Question 5
Given an equation y = 2x + 3 and its graph shown
below
a) What is the value for x if y = 9?
b) Can you find the value for x in another way?

Explain your answer.
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of this algebraic solution method, many students
failed to realize—after converting the equations
into slope-intercept form and calculating the slope
of each line by selecting points from each line—
that the points used in calculating each slope were
themselves solutions to the equations.

Finally, the nature of the translation tasks—
tasks that require moving from one mode of repre-
sentation to another—may also play a role in limit-
ing the connections that students make between
the representations. Students are routinely given
tasks that require translations in the equation-to-
graph direction; students initially produce a table
of values that satisfies the equation, which is typi-
cally in slope-intercept form, and then plot the val-
ues on a coordinate graph (Leinhardt, Zaslavsky,
and Stein 1990). As a consequence, students may
have difficulty on tasks in which they must proceed
in the graph-to-equation direction. Indeed, all the
questions described in this article required just
such a translation, and students’ responses indicate
that the nature of the translation tasks may have
contributed to their difficulties.

CONCLUDING REMARKS
Students often appear to understand connections
between equations and graphs, particularly given
the nature of the tasks that they typically
encounter. As the results of this study suggest, for
many students, their actual understanding of the
connections is often superficial at best. An impor-
tant aspect of developing a robust understanding of
the notion of function means not only knowing
which representation is most appropriate for use in
different contexts but also being able to move flexi-
bly between different representations in different
translation directions. As teachers, we need to rec-
ognize this goal as being important for instruction.
We must give students opportunities to interact
with, and to build connections between, graphical
and algebraic representations. 

In my own classroom, I often encourage students
to use different representations in their solution
methods; present different forms of equations, for
example, point-slope and standard; emphasize
graphical representations whenever appropriate,
for example, when using a graphing calculator; and
pose tasks that require translations in the graph-
to-equation direction. Perhaps most important,
however, I give students opportunities to share and
discuss their different solution approaches and the
advantages or disadvantages of each approach,
even on such routine problems as the ones present-
ed in this article.
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