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Kinematics and Graphs: 
Students’ Difficulties and CBLs

Patricia Hale

n a typical course that covers the concepts of func-
tions and graphs, the teacher might use a graph to
represent the acceleration of a moving object. After
drawing a simple graph for an object with constant
acceleration of –0.5 m/s2, she then asks the class,
“If the object—a car or person perhaps—has an ini-
tial velocity of –2m/s, describe the velocity of the
object.”

Brad raises his hand and says, “It would be mov-
ing backward at a constant rate of –2m/s, so . . . ”

“No! It wouldn’t be constant,” interrupts Todd. “It
has to come to a stop some time, so eventually the
velocity has to be zero.”

“The velocity is negative, which means that it’s
going backward,” says Sara, “and the acceleration
is negative, which means that it’s slowing down.”

In this classroom scenario, all the students are
incorrect. The teacher was attempting to tie the
students’ mathematical knowledge to a real-world
situation using velocity and acceleration because
she thought that doing so would cause their under-
standing of the mathematical concepts to solidify,
but she discovered difficulties with the students’
understanding of these variables. Brad incorrectly
assumed that the graphs for velocity and accelera-
tion would be similar; Todd based his solution on
his real-world knowledge that all moving objects
eventually come to a stop; and Sara related the
concepts of “negative” and “slowing down,” or de-
celerating, in an inappropriate manner.

As the lesson progresses, the teacher may discov-
er that students continue to have trouble with
motion graphs, even when they understand the
mathematical concepts. Indeed, researchers’ find-
ings support this conclusion (Hale 1996; Monk
1994; Nemirovsky and Rubin 1992).

Graphs of kinematics variables—position, veloci-
ty, and acceleration—are a staple of physics and
mathematics courses. In differential calculus, kine-
matics furnishes the most natural setting for ex-
plaining and illustrating rates of change. However,
misinterpretations of kinematics graphs are com-
mon among students. McDermott, Rosenquist, and
van Zee (1987) found that students, even those in
the honors section of a calculus-based university

physics course, had trouble interpreting kinematics
graphs.

Researchers in both science and mathematics edu-
cation have closely examined some misconceptions
underlying students’ difficulties in interpreting
kinematics graphs. Common problems include dis-
criminating between the slope and height of a graph
(McDermott, Rosenquist, and van Zee 1987; Bell
and Janvier 1981; Clement 1989) and relating one
type of graph to another (Brasell 1987; McDermott,
Rosenquist, and van Zee 1987). In this article, we
discuss the nature of each of these problems and
include examples from research of how this mis-
conception is expressed by students, possible
underlying causes, and promising remedies.

DISCRIMINATING BETWEEN 
THE SLOPE AND HEIGHT OF A GRAPH
Research shows that many students will respond
incorrectly by giving the height of a graph at a
point when the slope of the graph at that point is
the correct response. Such an error is often consid-
ered a “simple mistake,” that is, an error that is not
caused by a misconception but is caused by a mis-
reading or some other simple error. For example,
McDermott, Rosenquist, and van Zee (1987) gave
students a graph similar to the one shown in fig-
ure 1 and asked which object had the greater veloc-
ity at time t = 2. Many students incorrectly chose
object B.
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Such an error could occur because the student
misread either axis. That error would not necessar-
ily indicate that the student’s conception was
faulty. Monk (1994) reported on a student named
Carl, who made that type of error but who did read
the axes correctly. Carl, a college student enrolled
in first-semester calculus, had completed the sec-
tion on differentiation. He received an A in this
course, as well as in the subsequent calculus
course. Carl used principles from his own experi-
ence, in addition to visual qualities of the graph
that supported his principles, to respond incorrectly
to a similar question. The question involved the
graph in figure 2, a graph of velocity versus time
for two cars. Carl was asked to describe the dis-
tance between the two cars after time t = 5.

Some “principles” that Monk reported that Carl
used include the following:

• The acceleration principle: If the blue car is
behind the red car and is accelerating very rapid-
ly while the red car is not accelerating at all,
then the blue car will get closer to the red car.

• The speed principle: If the red car is ahead of the
blue car at time t0 and the red car is going faster
than the blue car, then the red car will stay
ahead of the blue car and will actually get far-
ther ahead of the blue car (Monk 1994, 5).

Carl’s principles are reasonable and are based on
practical experience, but they do not generalize to
the given situation. The acceleration principle does
not apply to the situation of a car entering a free-
way on-ramp.The red car could be on the freeway
traveling at 70 MPH while the blue car is entering
the freeway and accelerating rapidly from 30 MPH
to 65 MPH. In that situation, the blue car would not
be getting closer to the red car; in fact, the red car
is moving farther away from the blue car.

The speed principle does not generalize because
it considers only the cars’ velocities at a particular
point in time and does not take acceleration into
account. For example, we can consider the red car
traveling at 70 MPH, at time t0 = 0 minutes, with no
acceleration while the blue car  is going 60 MPH
with acceleration. Five minutes later, the blue car
could be traveling at 80 MPH, whereas the red car is
still going 70 MPH. By then, the blue car is catching
up with the red car.

Monk’s discussion with Carl revealed that Carl
used visual aspects of the graph to support his prin-
ciples. In a series of conversations, Monk observed
the complex process through which Carl finally
arrived at the correct conclusion. Monk summa-
rized his observations about Carl’s understanding
as follows: “Carl’s understanding is robust, rich,
complex, and grounded in his experience; it cannot
be understood by focusing on his errors nor what he
lacks, it has to be understood within itself; in its

coherence and completeness, it has within it the
capacity to strongly resist change; it can change, of
course, although this only happens in relatively
rare moments of creativity and reflection” (Monk
1994, 16).

From Monk’s study, we see that students’ diffi-
culties can be rooted in their conceptions of kine-
matics variables, which are in turn influenced by
personal experience. Monk suggested making the
student aware of misconceptions through exercises
that relate mathematical concepts to practical
experience. Monk attempted to achieve this goal by
using a Microcomputer-Based Laboratory (MBL),
discussed subsequently, and student-interviewer
discussion.

RELATING ONE TYPE OF GRAPH 
TO ANOTHER
Research shows that students often expect the posi-
tion graph of an object to be similar to the velocity
graph of the object (Nemirovsky and Rubin 1992;
Brasell 1987). According to Nemirovsky and Rubin
(1992, 9), “Resemblances give students tools for
making sense of a complex situation. Students
probably do not adopt resemblances because they
have solid reasons to believe the tools are appropri-

A student’s
principles
may be 
reasonable,
but they 
may not 
generalize to
the given 
situation

1

0
10
20
30
40
50
60
70
80
90

2 3 4 5 6
Time (Seconds)

P
os

iti
on

 (
C

m
)

7 8 9 10

object A

object B

Fig. 1
Position-versus-time graph

From McDermott, Rosenquist, and van Zee (1987)

1

0
2
4
6
8

10
12
14

3 5
Time (Seconds)

V
el

oc
ity

 (
C

m
)

7 9 11 15 17 1913

Red car

Blue car

Fig. 2
Velocity-versus-time graph

From Monk (1994)



416 THE MATHEMATICS TEACHER

ate, but rather because the tools enable them to
organize and solve a bewildering domain of prob-
lems.” They further indicate that some students
might establish their own sets of principles, which
might be incorrect but are supported by other facts.
When Carl used visual features of the graph to sup-
port incorrect general assumptions that were based
on practical knowledge, he had done so. Nemirovsky
and Rubin (1992, 9) claimed that the students’
principle—that a function and its derivative resem-
ble each other—is supported by the fact that “[t]hey
both describe the behavior of the same object over
the same period of time.”

Nemirovsky and Rubin (1992) performed an ob-
servational study involving a student named Dan in
an MBL setting. As a result of their study, they con-
cluded that students’ learning is not a progressive
sequence of “getting” or “not getting” one idea after
another and that the use of resemblances is not a
matter of “confusion,” in the sense that students
cannot discriminate between volume and flow rate.

POSSIBLE REMEDIES
Students come to the mathematics classroom with
their own understandings of velocity, acceleration,
and distance that are based on their personal expe-
riences. We cannot simply ask students to abandon
their concepts and replace them with ours.

To improve students’ understanding of kinematics
graphs, some researchers put emphasis on using
the type of physical activity that occurs in an MBL
setting. In that setting, a probe attached to a micro-
computer enables the computer to produce real-
time graphs of such variables as position, velocity,
acceleration, heat, or light intensity. In an MBL
activity, students use the instruments to produce
graphs of an actual physical occurrence that they
create in the classroom. For example, as a student
moves forward and backward, faster and slower, a
computer with an attached motion detector can pro-
duce graphs of the student’s position, velocity, or
acceleration.

Dykstra, Boyle, and Monarch (1992) concluded
that MBL activities are the most effective approach
to help students arrive at a differentiated view of
velocity and acceleration, as opposed to an undiffer-
entiated view of motion. Students arrive at this dif-
ferentiated view as they begin to view graphs as
realistic representations of motion. The graphs are
used to help students confront paradoxes that arise
when their new view of motion conflicts with their
previous undifferentiated view. Thornton (1987)
found that MBL tools enable students to investi-
gate and correct their commonsense understand-
ings by making the “abstract” concrete through
immediate feedback.

Improving students’ understanding of kinematics
graphs requires more than using physical contexts

to demonstrate concepts. Monk (1994) listed the fol-
lowing implications of his study for changes in the
way that calculus should be taught:

• An emphasis on conceptual as opposed to proce-
dural learning—on understanding the ideas as
opposed to knowing how to do the procedures

• An emphasis on relating the mathematical ideas
to real situations

• Classroom formats that encourage discussion,
especially among students, in contrast to lectur-
ing and telling by the teacher; we saw that the
change in Carl’s understanding took place as he
was trying to explain his own ideas (Monk 1994,
16–17).

In 1996, to examine the relative effectiveness of
using physical occurrence and student discourse, I
conducted a study of college calculus students using
Calculator-Based Laboratory (CBL) instruments
(Hale 1996). These instruments are similar to MBL
tools, but the probes are attached to a graphing cal-
culator instead of to a microcomputer. I found that
using CBL activities to encourage student-student
discussion could be a powerful tool in promoting
conceptual change. In interviews, many students
responded as Ben did, “Doing that one lab where
we actually had to come up with the scenarios and
then kind of play them out to see whether they
worked—that helped out the most, I think.” How-
ever, when misconceptions were commonly held by
a group of students, I found that student-instructor
discourse was necessary to obtain the desired con-
ceptual change, particularly for what I found to be
the most common misconception, that negative
acceleration always means that an object is slowing
down.

For example, students were given several prob-
lems in which they were given an object’s accelera-
tion graph and initial velocity and were asked to
describe the motion of the object. They then created
the actual physical situation in the classroom and
used CBL instruments to produce graphs. The fol-
lowing conversation took place among students who
were trying to describe the motion of an object with
constant acceleration of –0.5 m/s2 and initial veloci-
ty of –2 m/s: 

Brad. It’s at negative.
Todd. And it’s decelerating so . . . if velocity is

negative, then it’s going in reverse.
Sara. It’s slowing down and going in reverse—

both!

This group monitored a toy car moving toward
the motion detector and slowing down. The velocity
graph produced with CBL tools had a positive
slope, yet the students thought that this result was
incorrect. In their discussion, they maintained that
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the car would be slowing down and going in reverse.
They were unable to recognize their error until the
instructor helped them realize that the car would
actually be accelerating.

Using CBL instruments to monitor the physical
occurrence was helpful in repairing students’ mis-
conceptions. Because of their inexperience with
CBL tools, some students did not trust the results
that they obtained from the instruments. This mis-
trust may be one reason that the CBL seemed most
effective when used primarily by the teacher. The
teacher may find it easier to guide students’ atten-
tion and the discourse in this setting.

In summary, students have many difficulties
interpreting graphs of kinematics variables. These
difficulties are often based on misconceptions that
are rooted in the students’ own experiences. Stu-
dents cannot repair their misconceptions until they
are confronted by them. The opportunity for con-
frontation is rarely furnished solely by the instruc-
tor’s articulation of a concept.

Laboratory activities using MBL or CBL instru-
ments supply a powerful setting and foster the op-
portunity for student discourse, both student-student
and student-teacher. The effectiveness of this
teaching strategy may depend on the teacher’s gen-
tle guidance of the discourse to the correct concept.
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