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HOW TO SOL VE IT 

George P6lya was born in Budapest in 1887. He began to study 
law at the University of Budapest in 1905 and eventually 
changed to philosophy, taking mathematics and physics as part 
of his philosophy course. In 1912 he gained his Ph.D. in math
ematics and, after carrying out posf-doctoral work at GOttingen 
and Paris, he took up a teaching position at the Federal Institute 
of Technology in ZU.rich in 1914. Four years later he married 
Stella Weber, a Swiss. After the outbreak of the Second World 
War the P6lyas moved to the United States in 1940 and settled in 
California, at Palo Alto. Here George P6lya took a post at 
Stanford University and in 1945 wrote How to Solve It, a book that 
has sold more than a million copies and has been translated into 
seventeen languages. He wrote three other books, and his 
collected papers fill four volumes. He died in 1985. 

Ian Stewart was born in Folkestone in 1945. He graduated from 
Cambridge University in 1966 with a B.A. degree in math
ematics and in 1969 obtained a Ph.D. from the University of 
Warwick, where he is now a Reader in Mathematics. He has 
held visiting positions in Germany, New Zealand, Connecticut 
and Texas and is an active research mathematician in nonlinear 
dynamics and bifurcation theory. He has written popular 
articles about mathematics for New Scientist, the Economist, The 
Times and the Guardian, and he occasionally contributes to BBC 
Radio. His books include Concepts of Modem Mathematics 
(Penguin, 1975), The Problems of Mathematics and Does God Play 
Dice?: The Mathematics of Chaos (Penguin, 1990). He lives in 
Coventry with his wife, two sons, two cats and a variable number 
of goldfish. 
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Foreword 
by Ian Stewart 

During my last couple of years at school I used to haunt 
the public library, looking for mathematics books. I now 
realize that this was not a normal activity for a r6-year
old, but at the time it seemed entirely natural, for I was in 
the grip of an irresistible addiction: mathematics. I still 
am. Among the scores of books that I devoured was one 
that was, even then, a classic. You hold it in your hands at 
this moment: How to Solve It. 

Any red-blooded mathematician would sign a pact 
with the Devil for that information. Mathematics is hard. 
So are most things that are worth doing, but mathematics 
demands an unusual mix of intellectual curiosity and nit
picking pedantry. George P6lya knew that mathematics is 
hard, but unlike most practitioners of the arcane art, he 
wanted to make it easier. He was a first-class research 
mathematician, a brilliant teacher and an able expositor. 
You won't find that combination often. 

P6lya noticed that his students didn't know how to 
solve problems. Countless thousands of mathematics 
teachers have observed the same thing, but P6lya's think
ing went a little deeper. The difficulty was not that his 
students didn't know enough mathematics, or that they 
didn't understand the mechanics of using what they knew. 
He came to the conclusion that what they lacked was the 
ability to direct their thought processes along fruitful 
channels. They might be able tacticians, but their sense of 
strategy was faulty. Could this be because they had no 
idea that there was any such thing as a strategy for solving 
a mathematical problem? 

P6lya's experience in research led him to recognize that 

Xl 
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there are a number of general problem-solving tech
niques, which mathematicians use all the time but seldom 
articulate. He called them heuristic strategies. At the begin
ning of his book you'll find a skeleton outline, dividing the 
process into four phases: 

• understand the problem 
• try to use experience from related problems to plan an 

attack 
• carry out the attack 
and, finally, 
• ask yourself whether you really believe the answer 

you've got. 

There are fashions in the teaching of mathematics. 
Problem-solving came into vogue in the 1980s, in part as a 
reaction against the abstraction of "New Mathematics". 
P6lya became the unwitting guru of the problem-solvers. 
The 1980 yearbook of the National Council ofTeachers of 
Mathematics in the USA reads as ifit has been marinated 
in P6lya sauce. More recently the idea has resurfaced 
as the buzzword investigation. Children should not learn 
facts or methods: they should investigate problems for 
themselves. 

It sounds exciting. But what is the evidence? Can 
people really use P6lya's heuristic strategies to solve 
problems? On the face of it, the answer seems to be 
obvious. The anecdotal evidence from practising mathe
maticians is massive and convincing. Yes, that's the way 
mathematicians think. On the other hand ... teachers who 
coached students for the International Mathematics 
Olympiads came to a unanimous conclusion. Students 
don't learn to solve problems by following P6lya's heuristic 
strategies. They learn to solve problems by starting with 
lots of raw talent and honing it razor-sharp on lots 
of abrasive problems. Programmers trying to develop 
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Artificial Intelligence found that computers couldn't 
use heuristics either. The future of P6lya's brainchild 
began to look less bright. 

By now you must be wondering whether I'm going to 
tell you not to buy the book. Not so. Didn't I just say it's a 
classic? But, in any case, coaches of would-be Olympians 
and the Artificial Intelligentsia notwithstanding, P6lya 
was right. 

Provided you apply his strategies at the right level. 
Let me leave that remark hanging, as one might a 

pheasant, to mature it, while I tell you a little about the 
man himself. 

"Mathematics is in between ... " 

George P6lya was born in Budapest on r 3 December 
r 887. As a child he did not "find mathematics especially 
interesting: he recalled that of his mathematics teachers 
"two were despicable and one was good". He was very 
bright: his position in class at the Gymnasium, or second
ary school, varied between second.and fourth, and appar
ently he had no trouble maintaining it. At that time 
Hungary ran the only national mathematics competition 
in the world for secondary-school pupils, the Eiitviis 
Competition. All students entering college were en
couraged to take part. P6lya went to the test centre, but 
didn't hand in his paper. 

In 1905 he began his studies at the University of 
Budapest. His mother insisted that he should study law. 
He stood the boredom for one term. He changed to 
languages and literature, and then to philosophy. As part 
of his philosophy course he was advised to take mathema
tics and physics. As a result he came into contact with two 
outstanding scientists: the physicist Lor.ind Eiitviis, and 
the mathematician Lip6t Fejer. Fejer's lectures were 
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famous, and, they attracted many "into mathematics. He 
used to sit in cafes talking to his students about math
ematical problems and telling them tales of famous math
ematicians. P6lya was among those hooked. "I thought, 
I am not good enough for physics and I am too good 
for philosophy. Mathematics is in between." 

In 1912 he gained his Ph.D., which was in mathematics 
with a minor in physics and chemistry. His thesis research 
was in probability theory. He did post-doctoral work at 
Giittingen and Paris, and in 1914 took up a teaching 
position at the Federal Institute ofTechnology in Zurich. 
At the outbreak of war he tried to join the Hungarian 
army but was rejected because of the after-effects of a 
childhood soccer injury. Later a more desperate Hungary 
tried to recall him from Switzerland, but by then P6lya 
had read Bertrand Russell and decided that war was 
wrong, and he stayed put. In 1918 he married Stella 
Weber, a Swiss. 

In r 940, one World War later, along with thousands of 
other European intellectuals who found the activities of 
Adolf Hitler intolerable, the P6lyas arrived in the United 
States. After a two:year visiting position at Brown Uni
versity, P6lya settled down in California at Palo Alto and 
took a post at Stanford University. Here, in 1945, he wrote 
How to Solve It. The book has since sold more than a million 
copies and has been translated into seventeen languages. 
He wrote three other books with an educational bent, and 
four research monographs. His collected papers fill four 
volumes. The Mathematical Association of America pro
duced a film of his lectures, called How to Teach Guessing. It 
won the "blue ribbon" in the Educational Film Library 
Association's Film Festival in 1968. 

P6lya's research touched many fields of mathematics, 
among them complex function theory, combinatorics and 
probability theory. His classification of the seventeen 
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discrete symmetry groups in the plane ("wallpaper pat
terns") had a significant influence on the artist Maurits 
Escher, who studied P6lya's paper carefully, transferring 
it in full to his notebooks. 

He was conservative about fashion in mathematics and 
in education. When he was in Zurich there was a great 
deal of interest among mathematicians in "intuitionistic 
logic", which holds that a proposition P and its double 
negative not-not-P may be different. Hermann Wey!, an 
enthusiast for intui tionism, bet P6lya that within fifty years 
the whole of mathematics would have been rewritten in 
intuitionistic terms; P6lya begged to differ. The terms of the 
bet were inscribed on a document, to be opened fifty years 
later. When it was, P6lya won hands down. 

Many of P6lya's sayings have been preserved. Asked 
which mathematician had influenced him most, he said it 
was Leonhard Euler (Swiss, r 707-83): "Euler did some
thing that no other great mathematician ofhis stature did. 
He explained how he found his results, and I was deeply 
interested in that. It has to do with my interest in 
problem-solving." He had many students, among them 
John von Neumann, one of the. fathers of the electronic 
computer, a man so versatile that his involvement with 
ENIAC was almost a sideline. P6lya said that von Neu
mann was "the only student of mine I was ever intimi
dated by. He was so quick. There was a seminar for 
advanced students in Zurich that I was teaching and von 
Neumann was in the class. I came to a certain theorem, 
and I said it is not proved and it may be difficult..Von 
Neumann didn't say anything but after five minutes he 
raised his hand. When I called on him he went to the 
blackboard and proceeded to write down the proof. After 
that I was afraid ofvon Neumann." 

P6lya remained interested in mathematics throughout 
his long life, but he felt his age keenly and often reminded 
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visitors that he was approaching a full century. When 
computers started to make an impact on the teaching of 
mathematics, Agnes Wieschenberg discussed them with 
him. "I am almost 100 years old, too old to learn compu
ters, but if I would live in New York I would listen to your 
computer classes," said P6lya. Paul Erdos promised him a 
100th birthday celebration. He replied, "Maybe 100, but 
not more." 

He died in Palo Alto on 7 September 1985, aged 97. 

Guidelines, not rules 

Let me return to the question ofheuristic strategies. P6lya 
saw them not as a rigid recipe but as a set of practical 
guidelines. It is inherent in the nature of guidelines that 
they don't work if you take them too literally. They are 
something that you must interpret through the eyes of 
experience. This explains at once why heuristics alone are 
of little use in Artificial Intelligence. But if they are 
embedded in a richer structure of machine inference, it 
turns out that they perform quite well. P6lya's strategies 
relate to a much deeper level than the operational surface 
of mathematics. In the same way, it looks as though the 
Olympians possessed so much raw talent that they 
already "knew" the heuristic strategies-and a lot more. 
Their main problem was to enlarge the background 
against which those strategies could operate. Educa
tionalists have found that P6lya's basic ideas can be made 
to work but that the skeleton which he laid down needs to 
be fleshed out before it leads to a successful teaching 
procedure. Each of P6lya's general strategies rriust be 
expanded into a group of related, but distinct, operational 
tactics. 

For example, one principle is that a general problem 
can often be illuminated by considering special cases. But 

t 
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the type of special case will ~ary from problem to problem. 
In questions about the summation ofn terms ofa series, it 
is often worth working out the first few cases, n = 1, 2, 

3, ..... If the problem is about the divisibility properties 
of integers, then the "right" special case may be when n is 
prime or when n has a small number of factors, but this 
time it seldom helps to look at the cases n = 1, 2, 3, .... 

Thus another educational problem arises, one that is. 
dealt with implicitly in How to Solve It but not perhaps 
given the emphasis it deserves. If a dozen or so general 
strategies are replaced by several hundred tactics, how is 
the student.to select which one to use? According to Alan 
Schoenfeld, "Research now indicates that a large part of 
what comprises competent problem-solving behaviour 
consists of the ability to monitor and assess what one does 
while working problems, and to make the most of the 

' . 

· problem-solving resources at one's disposal. It also indi-
cates that students are pretty poor at this, partly because 
issues of 'resource allocation during thinking' are almost 
never discussed." In short, the would-be problem-solver 
needs to develop a·feeling for when the attack is making 
progress or when it's bogged down in a dead end. The 
buzzword for this is metacognition. 

Developing this kind of ability requires a mixture of 
general guidelines, specific methods, plenty of practice on 
examples and the encouragement of a certain kind of 
introspection. It's as much an art as a science. 

P6lya's four phases 

You may feel that the first phase in solving a problem 
by P6lya's method scarcely needs to be made explicit. 
Understand the problem. Obvious, isn't it? 

Well, no. And it's a measure of the man's genius that he 
recognized the need for it. I never cease to be amazed at 
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All this from one picture. Inspired by an analogy, by 
family resemblances in two problems that we knew were 
quite different on a technical, operational level. This is not 
just problem-solving: it's problem-generation. The point 
that I want to make clear is that, whatever the role of 
P6lya-type heuristics, someone has to have the two pieces 
of the puzzle, Henon-Heiles and Hopf, in his or her head 
at the same time, otherwise nobody will spot the possible I 
connection. You can't consider lots of related but solved r.· 

problems unless your head is full of all sorts of bits of f 

mathematical reasoning. 1·· 

There's an ironic twist to this particular tale. When we 
started working on the problem we didn't know much r 
about Hamiltonian dynamics. Some time after we had , . 
gained a reasonable understanding of what was going I· 
on, and why the Henon-Heiles system looked like a tri
angularly symmetric Hopf bifurcation, we were looking in 
a standard research text and found a simple trick, known 
to most people in Hamiltonian dynamics, that converts 
one into the other. Even though periodic solutions to 
Hamiltonian systems don't arise by Hopf bifurcation, 
you can still detect them that way: you merely have to 
tinker with them to make thein non-Hamiltonian in just 
the right manner, by adding a bit of friction at the 
beginning and then taking.it away at the end. If we'd 
known that to begin with, we would probably have 
decided that there wasn't anything really interesting 
involved. But by the time we found out, we'd already 
pushed the theory well beyond what you could get from 
Hopf bifurcation, by using quite different ideas to get 
results that won't come from the simple textbook trick. 
So in this case some selective ignorance turned out to 
be crucial. Igno.rance is a strategy that, on the whole, I 
don't think you'll find in P6lya. Fortunately it's one 
that you don't have to teach: most of us can be pretty 
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ignorant about almost anything with remarkably little 
effort. 

"Use all the data" 

There are differences between the way a student goes 
about solving problems and the way that a research 
mathematician does. One of P6lya's pieces of advice to 
students (and a good one) is: "Did you use all the data?" 
Does the statement of the problem involve information 
that you haven't used? 

This particular-strategy is not so much about the 
mathematics as about what went on inside the teacher's or 
examiner's head. I recall W.W. Sawyer's graphic descrip
tion in Prelude to Mathematics of the process of"reconstruct
ing the examiner". The problem must have come from 
somewhere; somebody thought it up. How? Often that 
very question suggests a line of attack. 

But at research level you invent the problem yourself. It 
doesn't come to you with set hypotheses and a set conclu
sion, nor is there any guarantee that there is an answer at 
all. You therefore spend a great deal of time developing a 
feel for the problem, trying to decide what the essential 
ideas and concepts should be and how everything fits 
together. This is, if you like, the planning phase, but it's 
often not very structured. You can use P6lya's strategy 
only when you've got a pretty clear idea of what you want 
to prove. "Hang on, we haven't used the fact that Mis 
seven-dimensional! Something isn't right ... " You need 
to develop the ability to select the relevant information. 

In order to be able to select the crucial information, and 
make use ofit, mathematicians spend a great deal of their 
time acquiring both a broad background and a repertoire 
of more specific tricks. In the education of mathemati
cians it is important not to concentrate solely on problem-
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solving methods: the actual mathematical content is im
portant too. And a lot of that content must be taught in a 
fairly conventional way. Life is too short for students to 
"discover" by their own "investigations" everything that 
they ought to know. I'm very happy that they should learn 
to work out ideas by themselves, but I'm also rather 
worried that, unless we're careful, the next generation of 
students will be able to.talk the hind leg off a donkey about 
the thought-processes involved in solving problems but 
will be able to operate only at a very low level in terms of 
content. And I also feel there's an inherent contradiction 
in an "investigation" whose success is measured by 
whether or not investigators find what the teacher wants 
them to find. There is a real danger here, and the key to 
avoiding it is to see problem-solving as a practical tool, 
part of the mathematician's mental equipment, but not as 
an end in itself. 

P6lya knew all this. He intended the advice in his book 
to be appliedflexibly, informed by intelligence and experi
ence. In a sense it is advice to the teacher, who is assumed 
to recognize familiar sensations, rather than to the stu
dent. It is not, and never was meant to be, an easy method 
for forcing mathematical ability into human heads. I 
don't believe there is any such method: the ability comes 
from within those heads, and it can be nurtured and 
developed but not forced. 

Heuristics in the kitchen 

Let me give you an example of a problem that is very easy 
to solve if the "right" background intuition has been 
developed but much harder ifit has not. Many of you will 
have seen this particular problem before; if you haven't, 
you might like to experiment, using P6lya's heuristics, 
_and see whether they work for you. 
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In 1988 I was involved in the preparation of a 
series of TV programmes whose aim was to convey the 
enjoyment of mathematics at an elementary level to a. 
broad audience (it averaged 8 million over the seven-show 
series). The chosen vehicle was puzzles, solved by individ
uals or teams in the studio. On the surface it resembled 
just another game show, but the production team made a 
big effort to include significant mathematical ideas. Part 
of my job was to make sure they didn't overstep the 
bounds of accuracy in the effort to keep the ideas simple. 
We spent many days thinking about the thought 
processes involved in solving puzzles: they are very simi
lar to those involved in solving a mathematical problem. 

It became clear early on that mathematicians have at 
their disposal certain reflexes that are not naturally pres
ent in most of us-not so much techniques as points of 
view. A sense of symmetry is one, an ability to discard 
irrelevant information another. In some ways puzzles are 
more accurate models for research mathematics than 
problems in maths exams or textbooks are: in puzzles and 
research much of the inform.ation available has no bearing 
on the final answer, and the trick is to filter out the noise. 

One puzzle was about connecting up items of kitchen 
equipment to electric plugs: A to a, B to b, C to c. The 
cables must not cross. 

a 0 0 
C 

Figure 1 

b 
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The line of argument-the heuristic-that we extrac
ted from our deliberations is the following. Item C differs 
from the other two in that it is attached to a wall. So cable 
Cc cuts the kitchen in two, whereas Aa and Bb don't. Ifwe 
run cable Cc the wrong way, we can cut off A from a and 
make our task impossible, like this: 

a 0 
C 

Figure 2 

0 b 

The way the puzzle is set deliberately deceives you into 
wanting to draw this incorrect connection. That's the art 
of puzzle-setting. A well-developed mathematical nose 
can sniff out these red herrings. The key mathematical 
idea here is connectedness. This is fundamentally a topologi
cal concept, and at a deeper level the puzzle is really about 
topology, but we felt that topology is too complicated for 
prime-time TV. However, I reckon that my audience here 
can tolerate a lot more, and I'll return to the topological 
idea below. 

Research mathematicians know a very useful heuristic 
principle: leave the hard bit to last. Maybe you can knock off 
enough easy bits to find out that the problem isn't as hard 
as you'd thoughLThere's an equally valid principle that 
contradicts this completely: go for the jugular. It seems not 
to work as well on this particular puzzle, but sometimes 
it's better. One of the nice things about heuristics is that 
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they don't have to be consistent. If one approach doesn't 
work, try another.You're in trouble only when you've run 
out of things to try. 

Anyway, this suggests connecting up Aa and Bb first. 
· How? However you please. Keep it simple: 

C 

Figure 3 

Now you've got a little maze to thread, and the answer's 
easy: 

Figure 4 

Great! 
However, that's not how trained mathematicians will 

think about it. They have well-developed reflexes that 
come into play immediately. To the professional the puzzle 
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is manifestly an exercise in topology. The shape of the 
room doesn't matter: a circle or ellipse would do just as 
well. In fact, you can distort the room any way you choose, 
as long as you do so by a continuous deformation. Not only 
the outline: you can distort the floor too. 

In particular you can distort it so that A and B change 
places: · 

a 0 
C 

Figure 5 

~ b 

If the problem had been posed in this form to begin with, 
you'd have considered it a pretty awful puzzle because the 
answer stares you in the face: 

a...----1 f------lb 

C 

Figure 6 
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The coup de grace 

Except for one final thing: you have to recover the answer 
to the problem in its original form. Mathematicians are 
often so pleased that they've "solved it" that they omit to 
write down this final step. They forget that what they've 
solved is some other problem that they happen to know is 
equivalent to the original one. The proof then comes to an 
abrupt and premature halt. This is a very bad habit 
because it confuses students no end. It's also a very 
difficult habit to shed. You stop when you think you've 
reached the end-that is, when the problem rolls over on 
its back and waves a white flag. When Caesar's given your 
opponent the thumbs-down, it's easy to forget you still 
have to administer the coup de gr&e. 

To do that in this case you've got to work out what the 
deformation that interchanges A and B actually does. 
Then you can undo it and carry the whole layout of the 
cables with you. Imagine the kitchen floor is made of 
putty. Stick two fingers into A and B, and twist your hand 
through 180 degrees, pulling the putty with you. Every
thing swirls round, continuously, and A and B change 
places. To undo this deformation you twist back the other 
way. You should now be able to see that twisting Figure 6 
like this leads directly to Figure 4, the answer we wanted. 

This reflex of the professional is not at all obvious. It has 
to be learnt, and it can be learnt only in a topology course. 
So what problem-solving resources you have at your 
disposal depend upon mathematical content as well as 
problem-solving strategy. New kinds of problem can lead 
to new strategies; new strategies can solve new kinds of 
problem. In fact, this is one of the most important ways in 
which really new mathematics gets developed. 

But what, to my mind, is the real lesson that this puzzle 
teaches us is something that most of you will have to take 
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on trust-though I assure you it's true. Most of us find 
Figure r quite hard and Figure 3 trivial and don't see any 
connection between the two. Topologists, by contrast, . 
find it ~ery hard to distinguis_h the two versions at all. For fl•· 

topologists, the puzzle doesn't exzst. . · 
Does the "swirling" argument flit through their brain 

so fast that they don't consciously notice it? I don't think I 
so. I think they just know immediately that it can be done. I 
If pushed, they then think for a few seconds and come up I 
with the "swirling" image. I'm no topologist, but that's I 
the order in which I "solved" the puzzle. First I saw that it I 
had to be trivial, then I had to rationalize why. 
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gathering of mathematicians nobody has any paper, so 
they use an old napkin. Nobody has a pen ,either, but they 
borrow one from somebody in the business studies depart
ment. What gets written on the napkin is cryptic and 
incoherent. Then suddenly one of them says, "Oh! t;!:iat's 
done it!" The others nod sagely. What's done what? you 
think. How do they know? But they've all simultaneously 
come to the same conclusion: they've seen the light at the 
end of the tunnel. From that moment they all agree that 
the problem is "solved", even if working out the answer is 
a twenty-page calculation. The main idea has arrived. 
The problem has cracked wide open, ripe for plunder. 

Weak points 

Mathematical problems aren't uniformly impenetrable. 
They have their weak points, places where you can insert 
a probe, waggle it, exert some leverage, chip a bit off. Or, 
sometimes, crack the thing wide open. Mathematicians 

A student of topology may "know" the theorem that 
any finite set of points in a rectangle can be moved to any 
positions you please by a topological transformation
and thus "know" how to solve the puzzle-without being 
able to lay hands on the actual transformation required. 
There's a big difference between knowing facts and know
ing how those facts fit together. There's also a difficult 
technical problem for the professional: to prove that what 
is intuitively obvious here is actually true. A. logically 
rigorous proof that it is possible to interchange A and B by 
a topological transformation is surprisingly subtle. But all 
of this is part and parcel of a fully fledged topologist's 
mode of thought, and it is available immediately and 
without conscious effort. 

r can sense these things. They don't check the logic of a 

t

• proof by some laborious calculation with a truth-table: 
they have the entire plan of campaign mapped out in their 

, . heads, and they know when the enemy is on the run. 
! ~hat we need to do is to _equip our students with t,he 
· ability to sense these weak pomts, to know whether they re 

If you ever get the chance, listen to mathematicians f 

discussing research over coffee or lunch. Yes, they do that 11. 
a lot-it's almost impossible to stop them (research, that 
(s, not lunch)._ Anyway, you'll ~bserve that they jabber I• 

mcomprehens1bly and wave the1r hands about. The two 
most important items of mathematical equipment are p·en i 
and paper. (And, as the old story has it, a wastepaper / 
basket, thus distinguishing mathematics from philos- · 
ophy.) It seems to be an almost unfailing rule that in any 

l 

making progress or getting stuck. We need to monitor 
their thought processes and evaluate them as they go. 
P6lya's heuristics help: they provide a kind of toolkit for 
manoeuvring about a problem, seeking an opening. But 
it's not enough just to cart the toolkit around with you. It's 
not even enough to be able to name each tool and know 
how it works. The subtler art is to select the right tool at 
the right time and to use the tools in such a manner that 
you get the job finished. 

I believe that teachers can make their students aware of 
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this deeper level of subtlety too-at least, to some extent, 
for those students who are sufficiently receptive. Don't 
expect silk purses from sows' ears. And be aware that it's a I 
much, much harder task than just following a few rules by I From the Preface to the First Printing 
rote. 

It's clear that P6lya must have known this; indeed, it's 
what his book is really about. You can gain a great deal of 
pleasure by reading it and a great deal of insight into the 
prqblem-solving mentality. However, P6lya didn't call his 
book The Only Way to Solve It. He didn't envisage it as a 
"how to" book in the sense of How to Develop a Super-power 
Memory, a recipe book of specific techniques. It is more like 
How to Make Friends and Influence People, general advice to a 
sensitive and intelligent reader who already has a general 
comprehension of the nature of the enterprise. It's not 
some magic prescription or universal nostrum to cure all 
mathematical ills. But it is the outcome of careful and 
informed deliberations by one of the great teachers among 
the ranks of research mathematicians. If you read it with 
intelligence, sensitivity and plenty of cominon sense, then 
within its pages you'll find a great deal of sensible advice 
and a lot to think about. 

Ian Stewart 
Warwick University, September 1989 

t 
I 
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A great discovery solves a great problem but there is a 
grain of discovery in the solution of any problem. Your 

· problem may be modest; but if it challenges your curios
ity and brings into play your inventive faculties, and if 
you solve it by your own means, you may experience the 
tension and enjoy the triumph of discovery. Such experi
ences at a susceptible age may create a taste for mental 
work and leave their imprint on mind and character for 
a lifetime. 

Thus, a teacher of mathematics has a great opportu
nity. If he fills his allotted time with drilling his students 
in routine operations he kills their interest, hampers 

f . thei: intelle~tual development, an~ ~isuses ~is oppor
' tunity. Bl.lt 1£ he challenges the cunos1ty of his students 

by setting them problems proportionate to their knowl-
edge, and helps them to solve their problems with stimu
lating questions, he may give them a taste for, and some 
means of, independent thinking. 

Also a student whose college curriculum includes some 
mathematics has a singular opportunity. This opportu
nity is lost, of course, if he regards mathematics as a 
subject in which he has to earn so :md so much credit 
and which he should forget after the final examination 
as quickly as possible. The opportunity may be lost even 
if the student has some natural talent for mathematics 
because he, as everybody else, must discover his talents 
and tastes; he cannot know that he likes raspberry pie if 
he has never tasted raspberry pie. He may manage to find 
out, however, that a mathematics problem may be as 
much fun as a crossword puzzle, or that vigorous mental 
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work may be an exercise as desirable as a fast game of 
tennis. Having tasted the pleasure in mathematics he will 
not forget it easily and then there is a good chance that 
mathematics will become something for him: a hobby, or 
a tool of his profession, or his profession, or a great 
ambition. 

The author remembers the time when he was a student 
himself, a somewhat ambitious student, eager to under
stand a little mathematics and_ physics. He listened to 
lectures, read books, tried to take in the solutions and 
facts presented, but there was a question that disturbed 
him again and again: "Yes, the solution seems to work, 
it appears to be correct; but how is it possible to invent 
such a solution? Yes, this experiment seems to work, this 
appears to be a fact; but how can people discover such 
facts? And how could I invent or discover such things by 
myself?" Today the author is teaching mathematics in a 
university; he thinks or hopes that some of his more eager 
students ask similar questions· and he tries to satisfy their 
curiosity. Trying to understand not only the solution of 
this or that problem but also the motives and procedures 
of the solution, and trying to explain these motives and 
procedures to others, he was finally led to write the 
present book. He hopes that it will be useful to teachers 
who wish to develop their students' ability to solve prob
lems, and to students who are keen on. developing their 
own abilities. 

Although the present book pays special attention to the· 
requirements of students and teachers of mathematics, it 
should interest anybody concerned with the ways and 
means of invention and discovery. Such interest may be · 
more widespread than one would assume without reflec
tion. The space devoted by popular newspapers and 
magazines to crossword puzzles and other riddles seems 
to show that people spend some time in solving unprac-
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tical problems. Behind the desire to solve this or that 
problem that confers no material advantage, there may 
be a deeper curiosity, a desire to understand the ways and 
means, the motives and procedur1:s, of solution. 

The following pages are written somewhat concisely, 
but as simply as possible, and are based on a long and 
serious study of methods of solution. This sort of study, 
called heuristic by some writers, is not in fashion now
adays but has a long past and, perhaps, some future. 

Studying the methods of solving problems, we perceive 
another face of mathematics. Yes, mathematics has two 
faces; it is the rigorous science of Euclid but it is also 
something else: Mathematics presented in the Euclidean 
way appears as a systematic, deductive science; but mathe
matics in the making appears as an experimental, in
ductive scierice. Both aspects are as old as the science of 
mathematics itself. But the second aspect is new in one 
respect; mathematics "in statu nascendi," in the process 
of being invented, has never before been presented in 
quite this manner to the student, or to the teacher him
self, or to the general public. 

The subject of heuristic has manifold connections; 
mathematicians, logicians, psychologists, educationalists, 
even philosophers may claim various parts of it as belong
ing to their special domains. The author, well aware of 
the possibility of criticism from opposite quarters and 
keenly conscious of his limitations, has one claim to 
make: he has some experience in solving problems and 
in teaching mathematics on various levels. 

The subject is more fully dealt with in a more exten
sive book by the author which is on the way to com
pletion. 

Stanford University, August I, z944 
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I am glad to say that I have now succeeded in fulfilling, 
at least in part, a promise given in the preface to the 
first printing: The two volumes Induction and Analogy 
in Mathematics and Patterns of Plausible Inference which 
constitute my recent work Mathematics and Plausible 
Reasoning continue the line of thinking begun in How 
to Solve It. 

Zurich, August 30, I954 
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. Preface to the Second Edition 

The present second edition adds, besides a few minor 
improvements, a new fourth part, "Problems, Hints, 
Solutions." 

As this edition was being prepared for print, a study 
appeared (Educational Testing Service, Princeton, N.J.; 
cf. Time, June 18, 1956) which seems to have formu
lated a few pertinent observations-they are not new to 
the people in the know, but it was high time to formu
late them for the general public-: " ... mathematics has 
the dubious honor of being the least popular subject in 
the curriculum . . . Future teachers pass through the 
elementary schools learning to detest mathematics . . . 
They return to the elementary school to teach a new 
generation to detest it." 

I hope that the present edition, designed for wider 
diffusion, will convince some of its readers that mathe
matics, besides being a necessary avenue to engineering 
jobs and scientific knowledge, may be fun and may also 
open up a vista of mental activity on the highest level. 

Zurich, June 30, I956 
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First. 

You have to understand 
the problem. 

Second. 

Find the connection between 
the data and the unknown. 

You may be obliged 
to consider auxiliary problems 

if an immediate connection 
cannot be found. 

You should obtain eventually 
a plan of the solution. 

.. 

HOW TO SOLVE IT 

UNDERSTANDING THE PROBLEM 

What is the unknown? What are the data? What is the condition? 
· Is it possible to satisfy the condition? Is the condition sufficient to 
determine the unknown? Or is it insufficient? Or redundant? Or 
contradictory? 

Draw a figure. Introduce suitable notation. 

Separate the various parts of the condition. Can you write them down? 

DEVISING A PLAN 

Have you seen it before? Or have you seen the same problem in a 
slightly different form? 

Do you know a related problem? Do you know a theorem that could 
be useful? 

Look at the unknown! And try to think of a familiar problem having 
the same or a similar unknown. 

Here is a problem relate¢ to yours and solved before. Could you use it? 
Could you use its result? Could you use its method? Should you intro
duce some auxiliary element in order to inake its use possible?. 

Could you restate the problem? Could you restate it still differently? 
Go back to definitions. · 

If you cannot solve the proposed problem try to solve first son:ie related 
problem. Could you imagine a more accessible related problem? _A 
more general problem? A more special problem? An analogous problem? 
Could you solve a part of the problem? Keep only a part of the condi
tion, drop the other part; how far is the unknown then determined, 
how can it vary? Could you derive something useful from the data? 
Could you think of other data appropriate to determine the unknown? 
Could you change the unknown or the data, or both if necessary, so 
that the new unknown and· the new data are nearer to each other? 
Did you use all the data? Did you use the whole condition? Have you 
taken into account all essential notions involved in the problem? 

CARRYING OUT THE PLAN 

Third. Carrying out your plan of the solution, check each step. Can you see 
Carry out your plan. clearly that the step is correct? Can you prove that it is correct? 

Fourth. 

Examine the solution obtained. 

LOOKING BACK 

Can you check the result? Can you check the argument? 

Can you derive the result differently? Can you see it at a glance? 
Can you use the result, or the method, for some other problem? 



Introduction 

The following considerations are grouped around the 
preceding list of questions and suggestions entitled "How 
to Solve It." Any question or suggestion quoted from it 
will be printed in italics, and the whole list will be 
referred to simply as "the list" or as "our list." 

The following pages will discuss the purpose of the 
list, illustrate its practical use by examples, and explain 
the underlying notions and mental operations. By way of 
preliminary explanation, this much may be said: If, 
using them properly, you address these questions and 
suggestions to yourself, they may help you to solve your 
problem. If, using them properly, you address the same 
questions and suggestions to one of your students, you 
may help him to solve his problem. 

The book is divided into four parts. 
The title of the first part is "In the Classroom." It 

contains twenty sections. Each section will be quoted by 
its number in heavy type as, for instance, "section 7." 
Sections I to 5 discuss the "Purpose" of our list in gen
eral terms. Sections 6 to 17 explain what are the "Main 
Divisions, Main Questions" of the list, and discuss a first 
practical example. Sections 18, 19, 20 add "More Ex
amples." 

The title of the very short second part is "How to 
Solve It." It is written in dialogue; a somewhat idealized 
teacher answers short questions of a somewhat idealized 
student. 

The third and most extensive part is a "Short Diction
ary of Heuristic"; we shall refer to it as the "Dictionary." 
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xl Introduction 

It contains sixty-seven articles arranged alphabetically. 
For example, the meaning of the term HEURISTIC (set 
in small capitals) is explained in an article with this title 
on page 112. When the title of such an article is referred 
to within the text it will be set in small capitals. Certain 
paragraphs of a few articles are more technical; they are 
enclosed in square brackets. Some articles are fairly 
closely connectl':d with the first part to which they add 
further illustrations and more specific comments. Other 
articles go somewhat beyond the aim of the first part of 
which they explain the background. There is a key
article on MODERN HEURISTIC. It explains the connection 
of the main articles and the plan underlying the Diction
ary; it co·ntains also directions how to find information 
about particular items of the list. It must be emphasized 
that there is a common plan and a certain unity, because 
the articles of the Dictionary show the greatest outward 
variety. There are a few longer articles devoted to the 
systematic though condensed discussion of some general 
theme; others contain more specific comments, still others 
cross-references, or historical data, or quotations, or 
aphorisms, or even jokes. 

The Dictionary should not be read too quickly; its text 
is often condensed, and now and then somewhat subtle. 
The reader may refer to the Dictionary for information 
about particular points. If these points come from his 
experience with his own problems or his own students, 
the reading has_ a much better chance to be profitable. 

The title of the fourth part is "Problems, Hints, Solu
tions." It proposes a few problems to the more ambitious 
reader. Each problem is followed (in proper distance) by 
a "hint" that may reveal a way. to the result which is 
explained in the "solution." 

We have mentioned repeatedly the "student" and the 
"teacher" and we shall refer to them again and again. It 

Introduction xli 

may be good to observe that the "student" may be a high 
· school student, or a college student, or anyone else who 
is studying mathematics. Also the "teacher" may be a 
high school teacher, or a college instructor, or anyone 
interested in the technique of teaching mathematics. The 
author looks at the situation sometimes from the point 
of view of the student and sometimes from that of the 
teacher (the latter case is preponderant in the first part). 
Yet most of the time (especially in the third part) the 
point of view is that of a person who is neither teacher 
nor student but anxious to solve the problem before him. 
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PART I. IN THE CLASSROOM 

PURPOSE 

I. Helping the student. One of the most important 
tasks of the teacher is to help his students. This task is 
not quite easy; it demands time, practice, devotion, and 
sound principles .. 

The student should acquire as much experience of 
independent work as possible. But if he is left alone with 
his problem without any help or with insufficient help, 
he may make no progress at all. If the teacher helps too 
much, nothing is left to the student. The teacher should 
help, but not too much and not too little, so that the 
student shall have a reasonable share of the work. 

If the student is not able to do much, the teacher 
should leave him at least some illusion of independent 
work. In order to do so, the teacher should help the 
student discreetly, unobtrusively. 

The best is, however, to help the student naturally. 
The teacher should put himself in the student's place, he 
should see the student's case, he should try to understand 
what is going on in the student's mind, and ask a ques
tion or indicate a step that could have occurred to the 
student himself. 

2. Questions, recommendations, mental operations. 
Trying to help the student effectively but unobtrusively 
and naturally, the teacher is led to ask the same questions 
and to indicate the same steps again and again. Thus, in 
countless problems, we have to ask the question: What 

l 
it!' 
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is the unknown? We may vary the words, and ask the 
same thing in many different ways: What is required? 

· What do you want to find? What are you supposed to 
seek? The aim of these questions is to focus the student's 
attention upon the unknown. Sometimes, we obtain the 
same effect more naturally with a suggestion: Look at the 
unknown! Question and suggestion aim at the same 
effect; they tend to provoke the same mental opera
tion. 

It seemed to the author that it might be worth while to 
collect and to group questions and suggestions which are 
typically helpful in discussing problems with students. 
The list we study contains questions and suggestions of 
this sort, carefully chosen and arranged; they are equally 
useful to the problem-solver who works by himself. If the 
reader is sufficiently acquainted with the list and can see, 
behind the suggestion, the action suggested, he may real
ize that the· list enumerates, indirectly, mental operations 
typically useful for the solution of problems. These 
operations are listed in the order in which they are most 
likely to occur. 

3. Generality is an important characteristic of the 
questions and suggestions contained in our list. Take the 
questions: What is the unknown? What are the data? 
TVhat is the condition? These questions are generally 
applicable, we can ask them with good effect dealing 
with all sorts of problems. Their use is not restricted to 
any subject-matter: Our problem may be algebraic or 
geometric, mathematical or nonmathematical, theoretical 
or practical, a serious problem or a mere puzzle; it makes 
no difference, the questions make sense and might help 
us to solve the problem. 

There is a restriction, in fact, but it has nothing to do 
with the subject-matter. Certain questions and sugges
tions of the list are applicable to "problems to find" only, 

5. Teacher and Student. Imitation and Practice 3 

not to "problems to prove." If we have a problem of the 
· latter kind we must use different questions; see PROBLEMS 

TO FIND, PROBLEMS TO PROVE. 

4. Common sense. The questions and suggestions of 
our list are general, but, except for their generality, they 
are natural, simple, obvious, and proceed from plain 
common sense. Take the suggestion: Look at the un
known! And try to think of a familiar problem having 
the same or a similar unknown. This suggestion advises 
you to do what you would do anyhow, without any 
advice, if you were seriously concerned with your prob
lem. Are you hungry? You wish to obtain food and you 
think of familiar ways of obtaining food. Have you a 
problem of geometric construction? You wish to con
struct a triangle and you think of familiar ways of con
structing a triangle. Have you a problem of any kind? 
You wish to find a certain unknown, and you think of 
familiar ways of finding such an unknown, or some simi
lar unknown. If you do so you follow exactly the sug
gestion we quoted from our list. And you are on the right 
track, too; the suggestion is a good one, it suggests to you 
a procedure which is very frequently successful. 

All the questions and suggestions of our list are natural, 
simple, obvious, just plain common sense; but they state 
plain common sense in general terms. They suggest a 
certain conduct which comes naturally to any person who 
is seriously concerned with his problem and has some 
common sense. But the person who behaves the right way 
usually does not care to express his behavior in clear 
words and, possibly, he cannot express it so; our list tries 
to express it so. 

5. Teacher and student. Imitation and practice. There 
are two aims which the teacher may have in view when 
addressing to his students a question or a suggestion of 
the list: First, to help the student to solve the problem 
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at hand. Second, to develop the student's ability so that 
he may solve future problems by himself. 

Experience shows that the questions and suggestions of 
our list, appropriately used, very frequently help the 
student. They have two common characteristics, common 
sense and generality. As they proceed from plain common 
sense they very often come naturally; they could have 
occurred to the student himself. As they are general, they 
help unobtrusively; they just indicate a general direction 
and leave plenty for the student to do. 

But the two aims we mentioned before are closely con
nected; if the student succeeds in solving the problem at 
hand, he adds a little ~o his ability to solve problems. 
Then, we should not forget that our questions are gen
eral, applicable in many cases. If the same question is 
repeatedly helpful, the student will scarcely fail to notice 
it and he will be induced to ask the question by himself 
in a similar situation. Asking the question repeatedly, he 
may succeed once in eliciting the right idea. By such a 
success, he discovers the right way of using the question, 
and then he has really assimilated it. 

The student may absorb a few questions of our list so 
well that he is finally able to put to himself the right 
question in the right moment and to perform the corre
sponding mental operation naturally and vigorously. 
Such a student has certainly derived the greatest possible 
profit from our list. What can the teacher do in order to 
obtain this best possible result? 

Solving problems is a practical skill like, let us say, 
swimming. We acquire any practical skill by imitation 
and practice. Trying to swim, you imitate what other 
people do with their hands and feet. to keep their heads 
above water, and, finally, you learn to swim by prac
ticing swimming. Trying to solve problems, you have to . 
observe and to imitate what other people do when solv-

6. Four Phases 5 

ing problems and, finally, you learn to do problems by 
doing them. 

The teacher who wishes to develop his students' ability 
. to do problems must instill some interest for problems 

into their minds and give them plenty of opportunity for 
imitation and practice. If the teacher wishes to develop 
in his students the mental operations which correspond 
to the questions and suggestions of our list, he puts these 
questions and suggestions to the students as often as he 
can do so naturally. Moreover, when the teacher solves 
a problem before the class, he should dramatize his ideas 
a little and he should put to himself the same questions 

. :which he uses when helping the students. Thanks to such 
guidance, the student will eventually discover the right 
use of these questions and suggestions, and doing so he 
will acquire something that_ is more important than the 
knowledge of any particular mathematical f_act. 

. MAIN DIVISIONS, MAIN QUESTIONS 

6. Four phases. Trying to find the solution, we may re
peatedly change our point of view, our way of looking 
at the problem. We have to shift our position again and 
again. Our conception of the problem is likely to be 
rather incomplete when we start the work; our out
look is different when we have made some progress; it 
is _ again different when we have almost obtained the 
solution. 

In order to group conveniently the questions and sug
gestions of our list, we shall distinguish four phases of 
the work. First, we have to understand the problem; we 
have to see clearly what is required. Second, we have to 
see how the various items are connected, how the un
known is linked to the data, in order to obtain the idea 
of the solution, to make a plan. Third, we carry out our 

.-
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plan. Fourth, we look back at the completed solution, 
we review and discuss it. 

Each of these phases has its importance. It may hap
pen that a student hits upon an exceptionally bright 
idea and jumping all preparations blurts out with the 
solution. Such lucky ideas, of course, are most desirable, 
but something very undesirable and unfortunate may 
result if the student leaves out any of the four phases 
without having a good idea. The worst may happen if 
the student embarks upon computations or construc
tions without having understood the problem. It is 
generally useless to carry out details without having ·seen 
the main connection, or having made a sort of plan. 
Many mistakes can be avoided if, carrying out his plan, 
the student checks each step. Some of the best effects may 
be lost if the student fails to reexamine and to reconsider 
the completed solution. 

7. Understanding the problem. It is foolish to answer 
a question that you do not understand. It is sad to work 
for an end that you do not desire. Such foolish and sad 
things often happen, in and out of school, but the teacher 
should try to prevent them from happening in his class. 
The student should understand the problem. But he 
should not only understand it, he should also desire its 
solution. If the student is lacking in understanding or in 
interest, it is not always his fault; the problem should be 
well chosen, not too difficult and not too easy, natural 
and interesting, and some time should be allowed for 
natural and interesting presentation. 

First of all, the verbal statement of the problem must 
be understood. The teacher can check this, up to a cer
tain extent; he asks the student to repeat the statement, 
and the student should be able to state. the problem 
fluently. The student should also be able to point out 
the principal parts of the problem, the unknown, the 
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data, the condition. Hence, the teacher can seldom afford 
to miss the questions: What is the unknown? Whai are 
the data? What is the condition? 

The student should consider the principal parts of the 
problem attentively, repeatedly, and from various sides. 
If there is a figure connected with the problem he should 
draw a figure and point out on it the unknown and the 
data. If it is necessary to give names to these objects he 
should introduce suitable notation; devoting some atten
tion to the appropriate choice of signs, he is obliged to 
consider the objects for which the signs have to be chosen. 
There is another question which may be useful in this 
preparatory stage provided that we do not expect a 
definitive answer but just a provisional answer, a guess: 
Is it possible to satisfy the condition? · 

(In the exposition of Part II [p. 33] "Understanding 
the problem" is subdivided into two stages: "Getting ac
quainted" and "Working for better understanding.") 

8. Example. Let us illustrate some of the points ex
plained in the foregoing section. We take the following 
simple problem: Find the diagonal of a rectangular paral
lelepiped of which the length, the width, and the height 

are known. 
In order to discuss this problem profitably, the students 

must be familiar with the theorem of Pythagoras, and 
with some of its applications in plane geometry, but they 
may have very little systematic knowledge in solid geom
etry. The teacher may rely here upon the student's un
sophistio.ted familiarity with spatial relations. 

The teacher can make the problem interesting by 
making it concrete. The classroom is a rectangular paral
lelepiped whose dimensions could be measured, and can 
be estimated; the students have to find, to "measure 
indirectly," the diagonal of the classroom. The teacher 
points out the length, the width, and the height of the 
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classroom, indicates the diagonal with a gesture, and 
enlivens his figure, drawn on the blackboard, by referring 
repeatedly to the classroom. 

The dialogue between the teacher and the students 
may start as follows: 

"What is the unknown?" 
"The length of the diagonal of a parallelepiped." 
"IVhat are the data?" 
"The length, the width, and the height of the parallele

piped." 

"Introduce suitable notation. Which letter should de
note the unknown?" 

·"x." 

"Which letters would you choose for the length, the 
width, and the height?" 

"a,, b, c."-

"What is the condition, linking a, b, c, and x?" 
"x is the diagonal of the parallelepiped of which a, b, 

and c are the length, the width, and the height." 
"Is it a reasonable problem? I mean, is the condition 

sufficient to determine the unknown?" . 
"Yes, it is. If we know a, b, c, we know the parallele

piped. If the parallelepiped is determined, the diagonal 
is determined." 

9. Devising a plan. We have a plan when we know, or 
know at least in outline, which calculations, computa
tions, or constructions we have to perform in order to 
obtain the unknown. The way from understanding the 
problem to conceiving a plan may be long and tortuous. 
In fact, the main achievement in the solution of a prob
lem is to conceive .the idea of a plan. This idea may 
emerge gradually. Or, after apparently unsuccessful trials 

. and a period of hesitation, it may occur suddenly, in a 
flash, as a "bright idea." The best that the teacher can do 
for the student is to procure for him, by unobtrusive 
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help, a bright idea. The questions and suggestions we are 
going to discuss tend to provoke such an idea. 

In order to be able to see the student's position, the 
teacher should think of his own experience, of his diffi
culties and successes in solving problems. 

We know, of course, that it is hard to have a good idea 
if we have little knowledge of the subject, and impossible 
to have it if we have no knowledge. Good ideas are based 
on past experience and formerly acquired knowledge. 
Mere remembering is not enough for a good idea, but we 
cannot have any good idea without recollecting some 
pertinent facts; materials alone are not enough for con
structing a house but we cannot construct a house with
out collecting the necessary materials. The materials 
necessary for solving a mathematical problem are certain 
relevant items of our formerly acquired mathematical 
knowledge, as formerly solved problems, or formerly 
proved theorems. Thus, it is often appropriate to start 
the work with the question: Do you know a related 
problem? 

The difficulty is that there are usually too many prob
lems which are somewhat related to our present problem, 
that is, have some point in common with it. How can we 
choose the one, or the few, which are really useful? There 
is a suggestion that puts our finger on an essential com-. 
mon point: Look at the unknown! And try to think of a 
familiar problem having the same or a similar unknown. 

If we succeed in recalling a formerly solved problem 
which is closely related to our present problem, we are 
lucky. We should try to deserve such luck; we may de
serve it by exploiting it. Here is a problem related to 
yours and solved before. Could you use it? 

The foregoing questions, well understood and seriously 
considered, very often help to start the right train of 
ideas; but they cannot help always, they cannot work 
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magic. If they do not work, we must look around for some 
other appropriate point of contact, and explore the vari
ous aspects of our problem; we have to vary, to transform, 
to modify the problem. Could you restate the problem? 
Some of the questions of our list hint specific means to 
vary the problem, as generalization, specialization, use of 
analogy, dropping a part of the condition, and so on; the 
details are important but we cannot go into them now. 
Variation of the problem may lead to some·appropriate 
auxiliary problem: If you cannot solve the proposed 
problem try to solve.first some related problem. 

Trying to apply various known problems or theorems, 
considering various modifications, experimenting· with 
various auxiliary problems, we may stray so far from our 
original problem that we are in danger of losing it alto
gether. Yet there is a good question that may bring us 
back to it: Did you use all the data? Did you use the 
whole condition? 

10. Example. We return to the example considered in 
section 8. As we left it, the students just succeeded in 
understanding the problem and showed some mild inter
est in it. They could now have some ideas of their own, 
some initiative. If the teacher, having watched sharply, 
cannot detect any sign of such initiative he has to resume 
carefully his dialogue with the students. He must be pre
pared to repeat with some modification the questions 
which the students do not answer. He must be prepared 
to meet often with the disconcerting silence of the 
students (which will be indicated by dots ..... ) . 

"Do you know a related problem?" 

"Look at the unknown! Do you know a problem hav-
ing the same unknown?" · 

"Well, what is the unknown?" 

ro. Example 11 

"The diagonal of a parallelepiped." 
"Do you know any problem with the same unknown?" 
"No. vVe have not had any problem yet about the 

diagonal of a parallelepiped." 
"Do you know any problem with a similar unknown?" 

"You see, the diagonal is a segment, the segment of a 
straight line. Did you never solve a problem whose un
known was the length of a line?" 

"Of course, we have solved such problems. For instance, 
to find a side of a right triangle." 

"Good! Here is a problem related to yours and solved 

before. Could you use it?" 

"You were lucky enough to remember a problem which 
is related to your present one and which you. solved 

X 
C 

b 
FIG. l 

before. Would you like to use it? Could you introduce 
some auxiliary element in order to make its use possible?" 

"Look here, the problem you remembered is about a 
triangle. Have you any triangle in your figure?" 

Let us hope that the last hint was explicit enough to 
provoke the idea of the solution which is to introduce 
a right triangle, (emphasized in Fig. 1) of which the 
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required diagonal is the hypotenuse. Yet the teacher 
should be prepared for the case that even this fairly ex
plicit hint is insufficient to shake the torpor of the stu
dents; and so he should be prepared to use a whole 
gamut of more and more explicit hints. . 

"Would you like to have a triangle in the figure?" 
"What sort of triangle would you like to have in the 

figure?" 
"You cannot find yet the diagonal; but you said that 

you could find the side of a triangle. Now, what will you 
do?" 

"Coµld you find the diagonal, if it were a side of a 
triangle?" 

When, eventually, with more or less.help, the students 
succeed in introducing the decisive-auxiliary element, the 
right triangle emphasized in Fig. 1, the teacher should 
convince himself that the students see sufficiently far 
ahead before encouraging them to go into actual calcula
tions. 

"I think that it was a good idea to draw that triangle. 
You have now a triangle; but have you the unknown?" 

"The unknown is the hypotenuse of the triangle; we 
can calculate it by the theorem of Pythagoras." 

"You can, if both legs are known; but are they?" 
"One leg is given, it is c. And the other, I think, is not 

difficult to find. Yes, the other leg is the hypotenuse of 
another right triangle." 

"Very good! Now I see that you have a plan." 
11. Carrying out the plan. To devise a plan, to con

ceive the idea of the solution is not easy. It takes so much 
to succeed; formerly acquired knowledge, good mental 
habits, concentration upon the purpose, and one more 
thing: good luck. To carry out the plan is much easier; 
what we need is mainly patience. 

The plan gives a general outline; we have to convince 1 

I2. Example 13 

ourselves that the details fit into the outline, and so we 
have to examine the details one after the other; patiently, 
till everything is perfectly clear, and no obscure corner 
remains in which an error could be hidden. 

If the student has really conceived a plan, the teacher 
has now a relatively peaceful time. The main danger is 
that the student forgets his plan. This may easily happen 
if the student received his plan from outside, and ac
cepted it on the authority of the teacher; but if he worked 
for it himself, even with some help, and conceived the 
final idea with satisfaction, he will not lose this idea 
easily. Yet the teacher must insist that the student should 
check each step. · 

We may convince ourselves of the correctness of a step 
in our reasoning either "intuitively" or "formally." We 
may concentrate upon the. point in question till we see 
it so clearly and distinctly that we have no doubt that 
the step is correct; or we may derive the point in ques
tion according to formal rules. (The difference between 
"insight" and "form:c":. proof" is clear enough in many 
important cases; we may leave fur~her discussion to 
philosophers.) 

The main point is that·the student should be honestly 
convinced of the correctness of each step. In certain cases, 
the teacher may emphasize the difference between "see
ing" and "proving": Can you see clearly that the step is 
correct? But' can you also prove that the step is correct? 

12. Example. Let us resume our work at the point 
where we left it at the end of section 10. The student, at 
last, has got the idea of the solution. He sees the right 
triangle of which the unknown x is the hypotenuse and 
the given height c is one of the legs; the other leg is the 
diagonal of a face. The student must, possibly, be urged 
to introduce suitable notation. He should choose y to de
note that other leg, the diagonal of the face whose sides 
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are a and b. Thus, he may see more clearly the idea of the 
solution which is to introduce an auxiliary problem 
whose unknown is y. Finally, working at one right tri
angle after the other, he may obtain (see Fig. 1) 

x2=y2+c2 
y2 = a2 + b2 

and hence, eliminating the auxiliary unknown y, 

x2=a2+b2+c2 

x = v' a2 + b2 + c2 
• 

The teacher has no reason to interrupt the student if 
he carries out these details correctly except, possibly, to 
warn him tf!at he should check each step. Thus, the 
teacher may ask: 

"Can you see clearly that the triangle with sides x, y, c 
is a right triangle?" 

To this question the student may answer honestly 
"Yes" but he could be much embarrassed if the teacher, 
not satisfied with the intuitive conviction of the student, 
should go on asking: 

"But can you prove that this triangle is a right tri
angle?" 

Thus, the teacher should rather suppress this question 
unless the class has had a good initiation in solid geome
try. Even in the latter case., there is some danger that the 
answer to an incidental question may become the main 
difficulty for the majority of the students: 

13. Looking back. Even fairly good students, when 
they have obtained the solution of the problem and writ
ten down neatly the argument, shut their books and look 
for something else. Doing so, they miss ai:r important and 
instructive phase of the work. By looking back at the 
completed solution, by reconsidering and reexamining 
the result and the path that led to it, they could consoli-
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date their knowledge and develop their ability to solve 
problems. A good teacher should understand and impress 
on his students the view that no problem whatever is com
pletely exhausted. There remains always something to do; 
with sufficient study and penetration, we could improve 
any solution, and, in any case, we can always improve our 
understanding of the solution. - · 

The student has now carried through his plan. He has 
written down the solution, checking each step. Thus, he 
should have good reasons to believe that his solution is 
correct. Nevertheless, errors are always possible, especially 
if the argument is long and involved. Hence, verifications 
are desirable. Especially, if there is some rapid and in
tuitive procedure to test either the result or the argument, 
it should not be overlooked. Can you check the result? 
Can you check the argument? 

In order to convince ourselves of the presence or of the 
quality of an object, we like to see and to touch it. And 
as we prefer perception through two different senses, so 
we prefer conviction by two different proofs: Can you de
rive the result differently? We prefer, of course, a short 
and intuitive argument to a long and heavy one: Can you 
see it at a glance? 

One of the first and foremost duties of the teacher is 
not to give his students the impression that mathematical 
problems have little connection with each other, and no 
connection at all with anything else. We have a natural 
opportunity to investigate the connections of a problem 
when looking back at its solution. The students will find 
looking back at the solution really interesting if they 
have made an honest effort, and have the consciousness 
of having done well. Then they are eager to see what else 
they could accomplish with that effort, and how they 
could do equally well another time. The teacher should 
encourage the students to imagine cases in which they 
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could utilize again the procedure used, or apply the re
sult obtained. Can you use the result, or the method, for 
some other problem? 

14. Example. In section 12, the students finally ob
tained the solution: If the three edges of a rectangular 
parallelogram, issued from the same corner, are a, b, c, 
the diagonal is 

- va2 + b2 + c2
• 

Can you check the result? The teacher cannot expect a 
good answer to this question- from inexperienced stu
dents. The students, however, should acquire fairly early 
the experience that problems "in letters" have a great 
advantage over purely numerical problems; if the prob
lem is given "in letters" its result is accessible to several 
tests to which a problem "in numbers" is not susceptible 
at all. Our example, although fairly simple, is sufficient 
to show this. The teacher can ask several questions about 
the result which the students may readily answer with 
"Yes"; but an answer "No" would show a serious flaw in 
the result. 

"Did you use all the data? Do all the data a, b, c 
appear in your formula for the diagonal?" 

"Length, width, and height play the same role in our 
question; our problem is symmetric with respect to a, b, c. 
Is the expression you obtained for the diagonal sym
metric in a, b, c? Does it remain unchanged when a, b, c 
are interchanged?" 

"Our problem is a problem of solid geometry: to find 
the diagonal of a parallelepiped with given dimensions 
a, b, c. Our problem is analogous to a problem of plane 
geometry: to find the diagonal of a rectangle with given 
dimensions a, b. Is the result of our 'solid' problem anal
ogous to the result of the 'plane' problem?" 

"If the height c decreases, and finally vanishes, the l 
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parallelepiped becomes a parallelogram. If you put c = o 
in your formula, do you obtain the correct formula for 
the diagonal of the rectangular parallelogram?" 

"If the height c increases, the diagonal increases. Does 
your formula show this?" 

"If all three measures a, b, c of the parallelepiped in, 
crease in the same proportion, the diagonal also increases 
in the same proportion. If, in your formula, you substi
tute 12a, 12b, 12c for a, b, c respectively, the expression of 
the diagonal, owing to this substitution, should also be 
multiplied by 12. Is that so?" 

"If a, b, c are measured in feet, your formula gives the 
diagonal measured in feet too; but if you change all meas
ures into inches, the formula should remain correct. Is 
that so?" 

(The two_ last questions are essentially equivalent; see 
TEST BY DIMENSION.) 

These questions have several good effects. First, an in
telligent student cannot help being impressed by the fact 
that the formula passes so many tests. He was convinced 
before that the formula is correct because he derived it 
carefully. But now he is more convinced, and his gain in 
confidence comes from a different source; it is due to a 
sort of "experimental evidence." Then, thanks to the 
foregoing questions, the details of the formula acquire 
new significance, and are linked up with various facts. 
The formula has therefore a better chance of being re
membered, the knowledge of the student is consolidated. 
Finally, these questions can be easily transferred to simi
lar problems. After some experience with similar prob
lems, an intelligent student may perceive the µnderlying 
general ideas: use of all relevant data, variation of the -
data, symmetry, analogy. If he gets into the habit of 
directing his attention to such points, his ability to solve 
problems may definitely profit. 
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Can you check the argument? To recheck the argument 
step by step may be necessary in difficult and important 
cases. Usually, it is enough to pick out "touchy" points 
for rechecking. In our case, it may be advisable to discuss 
retrospectively the question which was less advisable to 
discuss as the solution was not yet attained: Can you 
prove that the triangle with sides x, y, c is a right tri
angle? (See the end of section 12.) 

Can you use the result or the method for some other 
problem? With a little encouragement, and after one or 
two examples, the students easily find applications which 
consist essentially in giving some concrete interpretation 
to the abstract mathematical elements of the problem. 
The teacher himself used such a concrete interpretation. 
as he took the room in which the discussion takes place 
for the parallelepiped of the problem. A dull student may 
propose, as application, to calculate the diagonal of the 
cafeteria instead of the diagonal of the classroom. If the 
students do not volunteer more imaginative remarks, the 
teacher himself may put a slightly different problem, for 
instance: "Being given the length, the width, and the 
height of a rectangular parallelepiped, find the distance 
of the center from one of the corners." 

The students may use the result of the problem they 
just solved, observing that the distance required is one 
half of the diagonal they just calculated. Or they may use 
the method, introducing suitable right triangles (the 
latter alternative is less obvious and somewhat more 
clumsy in the present case). 

After this application, the teacher may discuss the con
figuration of the four diagonals of the parallelepiped, 
and the six pyramids of which the six faces are the bases, 
the center the common vertex, and the semidiagonals the 
lateral edges. When the geometric imagination of the 
students is sufficiently enlivened, the teacher should come 
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back to his question: Can you use the result, or the 
method, for some other problem? Now there is a better 
chance that the students may find some more interesting 
concrete interpretation, for instance, the following: 

"In the center of the fiat rectangular top of a building 
which is 21 yards long and 16 yards wide, a flagpole is to 
be erected, 8 yards high. To support the pole, we need 
four equal cables. The cables should start from the same 
point, 2 yards under the top of the pole, and end at the 
four corners of the top of the building. How long is each 
cable?" 

The students may use the method of the problem they 
solved in detail introducing a right triangle in a vertical 
plane, and another one in a horizontal plane. Or they 
may use the result, imagining a rectangular parallele
piped of which the diagonal, x, is one of the four cables 
and the edges are 

a= 10.5 b=S C = 6. 

By straightforward application of the formula, x = 14.5. 
For more examples, see CAN YOU USE THE RESULT? 
15. Various approaches. Let us still retain, for a while, 

the problem we considered in the foregoing sections 8, 
10, 12, 14. The main work, the discovery of the plan, was 
described in section 10. Let us observe -that the teacher 
could have proceeded differently. Starting from the same 
point as in section 10, he could have followed a somewhat 
different line, asking the following questions: 

"Do you know any related problem?" 
"Do you know an analogous problem?" 
"You see, the proposed problem is a problem of solid 

geometry. Could you think of a simpler analogous prob
lem of plane geometry?" 

"You see, the proposed problem is about a figure in 
space, it is concerned with the diagonal of a rectangular 
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parallelepiped. What might be an analogous problem 
about a figure in the plane? It should be concerned with 
-the diagonal-of-a rectangular-" 

"Parallelogram." 
The students, even if they are very slow and indiffer

ent, and were not able to guess anything before, are 
obliged finally to contribute at least a minute part of the 
idea. Besides, if the students are so slow, the teacher 
should not take up the present problem about the paral
lelepiped without having discussed before, in order to 
prepare the students, the analogous problem about the 
parallelogram. Then, he can go on now as follows: 

"Here is a problem related to yours and solved before. 
Can you use it?" 

"Should you introduce some auxiliary element in order. 
to make its use possible?" 

Eventually, the teacher may succeed in suggesting to 
the students the desirable jdea. It consists in conceiving 
the diagonal of the given parallelepiped as the diagonal 
of a suitable parallelogram which must be introduced 
into the figure (as intersection of the parallelepiped with 
a plane passing through two opposite edges). The idea is 
essentially the same as befor-e (section 10) but the ap
proach is different. In section 10, the contact with the 
available. knowledge of the students was established 
through the unknown; a formerly solved problem was 
recollected because its unknown was the same as that of 
the proposed problem. In the present section analogy 
provides the contact with the idea of the solution. 

16. The teacher's method of questioning shown in .the 
foregoing sections 8, 10, 12, 14, 15 is essentially this: 
Begin with a general question or suggestion of our list, 
and, if necessary, come down gradually to more specific 
and concrete questions or suggestions till you reach one 
which elicits a response in the student's mind. If you 
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have to help the student exploit his idea, start again, if 
possible, from a general question or suggestion contained 
in the list, and return again to some more special one if 
necessary; and so on. 

Of course, our list is just a first list of this kind; it 
seems to be sufficient for the majority of simple cases, but 
there is no doubt that it could be perfected. It is impor
tant, however, that the suggestions from which we start 
should be simple, natural, and general, and that their list 
should be short. 

The suggestions must be simple and natural because 
otherwise they cannot be unobtrusive. 

The suggestions must be general, applicable not only 
to the present problem but to problems of all sorts, if 
they are to help develop the ability of the student and not 
just a special technique. 

The list must be short in order that the questions may 
be often repeated, unartificially, and under varying cir
cumstances; thus, there is a chance that they will be 
eventually assimilated by the student and will contribute 
to the development of a mental habit. 

It is necessary to come down gradually to specific sug
gestions, in order that the student may have as great a 
share of the work as possible. 

This method of questioning is not a rigid one; for
tunately so, because, in these matters, any rigid, mechani
cal, pedantical procedure is necessarily bad. Our method 
admits a certain elasticity and variation, it admits various 
approaches (section 15), it can be and should be so 
applied that questions asked by the teacher could have 
occurred to the student himself. 

If a reader wishes to try the method here proposed in 
his class he should, of course, proceed with caution. He 
should study carefully the example introduced in section 
8, and the following examples in sections 18, 19, 20. He 
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should prepare carefully the examples which he intends 
to discuss, considering also various approaches. He should 
start with a few trials and find out gradually how he can 
manage the method, how the students take it, and how 
much time it takes. 

17. Good questions and bad questions. If the method 
of questioning formulated in the foregoing section is well 
understood it helps to judge, by comparison, the quality 
of certain suggestions which may be offered with the in
tention of helping the students. 

Let us go back to the situation as it presented itself at 
the beginning of section IO when the question was asked: 
Do you know a related problem? Instead of this, with the 
best intention to help the students, the question may be 
offered: Could you apply the theorem of Pythagoras? 

The intention may be the best, but the question is about, 
the worst. We must realize in what situation it was of
fered; then we shall see that there is a long sequence of 
objections against that sort of "help." 

(1) If the student is near to the solution, he may un
derstand the suggestion implied by the question; but if 
he is not, he quite possibly will not see at all the point at 
which the question is driving. Thus the question fails to 
help where help is most needed. 

(2) If the suggestion is understood, it gives the whole 
secret away, very little remains for the student to do. 

(3) The suggestion is of too special a nature. Even if 
the student can make use of it in solving the present 
problem, nothing is learned for future problems. The 
question is not instructive. 

(4) Even if he understands the suggestion, the student 
can scarcely understand how the teacher came to the idea 
of putting such a question. And how could he, the stu
dent, find such a question by himself? It appears as an 
unnatural surprise, as a rabbit pulled out of a hat; it is 
really not instructive. J 
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None of these objections can be raised against the pro
cedure described in section 10, or against that in sec
tion 15. 

MORE EXAMPLES 

18. A problem of construction. Inscribe a square in a 
given triangle. Two vertices of the square should be on 
the base of the triangle, the two other vertices of the 
square on the two other sides of the triangle, one on each. 

"What is the unknown?" 
"A square." 
"What are the data?" 
"A triangle is given, nothing else." 
"What is the condition?" 
"The four corners of the square should be on the per

imeter of the triangle, two corners on the base, one cor
ner on each of the other two sides." 

"Is it possible to satisfy the condition?" 
"I think so. I am not so sure." 
"You do not seem to find the problem too easy. If you 

· cannot solve the proposed problem, try to solve first some 
related problem. Could you satisfy a part of the con
dition-?'' 

"What do you mean by a part· of the condition?" 
"You see, the condition is concerned with all the ver

tices of the square. How many vertices are there?" 
"Four." 
"A part of the condition would be concerned with less 

than four vertices. Keep only a part of the condition, 
drop the other part. What part of the condition is easy 
to satisfy?" 

"It is easy to draw a square with two vertices on the 
perimeter of the triangle-or even one with three vertices 
on the perimeter!" 

"Draw a figure!" 
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The student draws Fig. 2. 

"You kept only a part of the condition, and you 
dropped the other part. How far is the unknown now 
determined?" 

FIG. 2 

"The square is not determined if it_ has only three · 
vertices on the perimeter of the triangle." 

"Good! Draw a figure." 
The student draws Fig. 3. 

FIG. 3 

"The square, as you said, is not determined by the part 
of the condition you kept. How can it vary?" 

"Three corners of your square are on the perimeter of 
the triangle but the fourth corner is not yet there where 
it should be. Your square, as you said, is undetermined, 
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it can vary; the same is true of its fourth corner. How 
can it vary?" 

"Try it experimentally, if you wish. Draw more squares 
with three corners on the perimeter in the same way as 
the two squares already in the figure. Draw small squares 
and large squares. What seems to be the locus of the 
fourth corner? How can it vary?" 

The teacher brought the student very near to the 
idea of the solution. If the student is able to guess that 
the locus of the fourth corner is a straight line, he has 
got it. 

19. A problem to prove. Two angles are in different 
planes but each side of one is parallel to the correspond
ing side of the other, and has also the same direction. 
Prove that such angles are equal. 

What we have to prove is a fundamental theorem of 
solid geometry. The problem may be proposed to stu
dents who are familiar with plane geometry and ac
quainted with those few facts of solid geometry which 
prepare the present theorem in Euclid's Elements. (The 
theorem that we have stated and are going to prove is the · 
proposition 10 of Book XI of Euclid.) Not only ques
tions and suggestions quoted from our list are printed 
in italics but also others which correspond to them as 
"problems to prove" correspond to "problems to find." 
(The correspondence is .worked out systematically in 

PROBLEMS TO FIND, PROBLEMS TO PROVE 5, 6.) 
"What is the hypothesis?" 
"Two angles are in different planes. Each side of one 

is parallel to the corresponding· side of the other, and has 
also the same direction. 

"What is the conclusion?" 
"The angles are equal." 
"Draw a figure. Introduce suitable notation." 
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The student draws the lines of Fig. 4 and chooses, 
helped more or less by the teacher, the letters as in Fig. 4. 

"What is the hypothesis? Say it, please, using your nota
tion." 

"A, B, C are not in the same plane as A', B', C'. And 
AB II A'B', AC II A.'C'. Also AB has the same direction as 
A'B', and AC the same as A'C'." 

A 

C 

A 

FIG. 4 

"What is the conclusion?" 
"LBAC == LB'A'C'." 
~ 

c' 

B' 

B 

"Look at the conclusion! And try to think of a familiar 
theorem having the same or a similar conclusion." 

"If two triangles are congruent, the corresponding 
angles are equal." 

"Very good! Now here is a theorem related to yours 
and proved before. Could you use it?,,. 

"I think so but I do not see yet quite how." 
"Should you introduce some auxiliary element in order 

to make its use possible?" 

"Well, the theorem which you quoted so well is about t 
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triangles, about a pair of congruent triangles. Have you 
any triangles in your figure?" 

"No. But I could introduce some. Let me join B to C, 
and B' to C'. Then there are two triangles, t:;, ABC, 
t:;, A'B'C'." 

"Well done. But what are these triangles good for?" 
"To prove the conclusion, LBAC = LB'A'C'." 
"Good! If you wish to prove this, what kind of tri-

angles do you need?" 

A' 

B' 

C 

A 

B 
FIG. 5 

"Congruent triangles. Yes, of course, I may choose B, 
C, B', C' so that 

AB = A'B', AC= A'C'." 

"Very good! Now, what do you wish to prove?" 
"I wish to prove that the triangles are congruent, 

t:;, ABC = t:;, A'B'C'. 

If I could prove this, the conclusion LBAC = LB'A'C' 
would follow immediately." 

"Fine! You have a new aim, you aim at a new conclu· · 
sion. Look at the conclusion! And try to think of a ,--
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familiar theorem having the same or a similar conclu
sion." 

"Two triangles are congruent if-if the three sides of 
the one are equal respectively to the three sides of the 
other." 

"Well done. You could have chosen a worse one. Now 
here is a theorem related to yours and proved before. 
Could you use it?" 

"I could use it if I knew that BC= B'C'." 
"That is right! Thus, what is your aim?" 
"To prove that BC = B'C'." 
"Try to think of a familiar theorem having the same or 

a similar conclusion." 
"Yes, I know a theorem finishing: ' ... then the two 

Iines are equal.' But it does not fit in." 
"Should you introduce some auxiliary element in order 

to make its use possible?" 

"You see, how could you prove BC = B'C' when there 
is no connection in the figure between BC and B'C'?" 

"Did you use the hypothesis? What is the hypothesis?" 
"We suppose that AB II A'B', AC II A'C'. Yes, of course, 

I must use that." 
"Did you use the whole hypothesis? You say that AB II 

A'B'. Is that all that you know about these lines?" 
"No; AB is also equal to A'B', by construction. They 

are parallel and equal to each other. And so are AC and 
A'C'." 

"Two parallel lines of equal length-it is an interesting 
configuration. Have you seen it before?" 

"Of course! Yes! Parallelogram! Let me join A to A', 
B to B', and C to C'." 

"The idea is not so bad. How many parallelograms 
have you now in your figure?" 

"Two. No, three. No, two. I mean, there are two of 
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which you can prove immediately that they are paral
lelograms. There is a third which seems to be a parallelo
gram; I hope I can prove that it is one. And then the · 
proof will be finished!" 

We could have gathered from his foregoing answers 
that the student is intelligent. But after this last remark 
of his, there is no doubt. 

This student is able to guess a mathematical result and 
to distinguish clearly between proof and guess. He knows 
also that guesses can be more or less plausible. Really, he 
did profit something from his mathematics classes; he 
has some real experience in solving problems, he can 
conceive and exploit a good idea. 

20. A rate problem. Water is fiowing into a conical 
vessel at the rate r. The vessel has the shape of a right 
circular cone, with horizontal base, the vertex pointing 
downwards; the radius of the base is a, the altitude of the 

a 

b 

FIG. 6 

cone b. Find the rate at which the surface is rising when 
the depth of the water is y. Finally, obtain the numerical 
value of the unknown supposing that a = 4 ft., b = 3 ft., 
r = 2 cu. ft. per minute, and y = 1 ft. 

The students are supposed to know the simplest rules 
of differentiation and the notion of "rate of change." 

"What are the data?" 
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"The radius of the base of the cone a = 4 ft., the alti
tude of the cone b = 3 ft., the rate at which the water is 
flowing into the vessel r = 2 cu. ft. per minute, and the 
depth of the water at a certain moment, y = 1 ft." 

"Correct. The statement of the problem seems to sug
gest that you.should disregard, provisionally, the numeri
cal values, work with the letters, express the unknown in 
terms of a, b, r, y and only finally, after having obtained 
the expression of the unknown in letters, substitute the 
numerical values. I would follow this suggestion. Now, 
what is the unknown?" 

"The rate at which the surface is rising when the depth 
of the water is y." 

"What is that? Could you say it in other terms?" . 
"The rate at which the depth of the water is in-

creasing." 
"What is that? Could you restate it still differently?" 
"The rate of change of the depth of the water." 
"That is right, the rate of change of y. But what is the 

rate of change? Go back to the definition." 
"The derivative is the rate of change of a function." 
"Correct. Now, is y a function? As we said before, we 

disregard the numerical value of y. Can you imagine that 
y changes?" 

"Yes, y, the depth of the water, increases as the time 
goes by." 

"Thus, y is a function of what?" 
"Of the time t." 
"Good. Introduce suitable notation. How would you 

write the 'rate of change of y' in mathematical symbols?" 

" dy " 
dt 

"Good. Thus, this is your unknown. You have to ex
press it in terms of a, b, r, y. By the way, one of these dat.J 
is a 'rate.' Which one?" 
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"r is the rate at which water is flowing into the vessel." 
"What is that? Could you say it in other terms?" 
"r is the rate of change of the volume of the water in 

the vessel." 
"What is that? Could you restate it still differently? 

How would you write it in suitable notation?" 

" dV ,, 
r = Tt· 

"What is V?" 
"The volume of the water in the vessel at the time t." 

"Good. Thus, you have to express ! in terms of a, b, 

dV H ·11 d . ?" 7t,Y·· OWWl you Olt 

"If you cannot solve the proposed problem try to solve 
first some related problem. I£ you do not see yet the con-

nection between ! and the data, try to bring in some 

simpler connection that could serve as a stepping stone." 

"Do you not see that there are other connections? For 
instance, are y and V independent of each other?" 

"No. When y increases, V_must increase too." 
"Thus, there is a connection. What is the connection?" 
"Well, V is the volume of a cone of which the altitude 

is y. But I do not know yet the radius of the base.'' 
. . 

"You may consider it, nevertheless. Call it something, 
say x.'' 

2 
"V = 11"X y ." 

3 
"Correct. Now, what about x? Is it independent of y?" 
"No. When the depth of the water, y, increases the 

radius of the free surface, x, increases too." 
"Thus, there is a connection. What is the connection?" 
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"Of course, similar triangles. 

x:y=a:b." 

"One more connection, you see. I would not miss 
_ profiting from it. Do not forget, you wished to know the 

connection between V and y." 
"I have 

X = ay 
. b 

2 3 
V = 1ra y ·" 

3b2 

"Very good. This looks like a stepping stone, does it 
not? But you should not forget your goal. What is the 
unknown?" 

"Well dy ·" 
' dt 

"You have to find a connection between ddy, ddV, and 
. t t 

other quantities. And here you have.one between y, V, 
and other quantities. What to do?" 

"Differentiate! Of course! 

dV 1ra2y2 dy 
dt = b2 dt. 

Here it is." 
"Fine! And what about the numerical values?" 

dV 
"If a = 4 b = 3 - = r = 2 y = r then 

' 'dt ' ' ' 

7r X 16 X I dy " 
2 = -· g dt 

PART II. HOW TO SOLVE IT 
A DIALOGUE 

Getting Acquainted 

Where. should I start? Start from the statement of the 
problem. 

What can I do? Visualize the problem as a whole as 
clearly arid as vividly as you can. Do not concern your
self with details for the moment. 

What can I gain by doing so? You should understand 
the problem, familiarize yourself with it, impress its pur
pose on your mind. The attention bestowed on the prob
lem may also stimulate your memory and prepare for the 
recollection of relevant points. 

Working for Better Understanding 

Where shouid I start? Start again from the statement 
_of the problem. Start when this statement is so clear to 
you and so well impressed on your mind that you may 
lose sight of it for a while without fear of losing it alto
gether. 

T-Vhat can I do? Isolate the principal parts of your 
problem. The hypothesis and the conclusion are the 
principal parts of a "problem to prove"; the unknown, 
the data, and the conditions are the principal parts of a 
"problem to find." Go through the principal parts of 
your problem, consider them one by one, consider them 
in turn, consider them in various combinations, relating 
each detail to other details and each to the whole of the 
problem. 
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