As shown on the number line below, k represents an unknown number between 2 and 3 . Plot each of the following, extending the line if necessary:
(a) $\mathrm{k}+3$
(b) $\mathrm{k}-2$
(c) -k
(d) $6-\mathrm{k}$

Mark a random number x between 1 and 2 (at a spot that only you will think of) on a number line.
Plot the opposite of each of the following:
(a) x
(b) $x+5$
(c) $x-4$
(d) $6-\mathrm{x}$

The equation $|x-7|=2$ is a translation of "the distance from x to 7 is 2 ."
(a) Translate $|x-7| \leq 2$ into English, and graph its solutions on a number line.
(b) Convert "the distance from -5 to x is at most 3 " into symbolic form, and solve it.

Fill in the blanks:
(a) The inequality $|\mathrm{x}-1.96|<1.04$ is equivalent to " x is between \qquad and \qquad ."
(b) The inequality $|x-2.45| \geq 4.5$ is equivalent to " x is not between \qquad and \qquad ."

Rearrange the eight words "between", " 4 ", "the", " 17 ", "is", "and", "x", and "distance" to form a sentence that is equivalent to the equation $|x-17|=4$. By working with a number line, find the values of x that fit the equation.

Jay thinks that the inequality $\mathrm{k}<3$ implies the inequality $\mathrm{k}^{2}<9$, but Val thinks otherwise. Who is right, and why?

