Your name:

This set of in-class and homework problems is designed to give you insight into the derivatives of power functions.

1. Let $f(x)=x^{2}$.
(a) Write the difference quotient for $f(x)$.
(b) Let $\Delta x=.01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$
x=-10,-8,-6,-4,-2,0,2,4,6,8,10
$$

Can you guess what $f^{\prime}(x)$ might be based on your table of values? Why or why not? Write the table in the space below:

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

(c) Repeat part (b) with $\Delta x=0.001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

(d) Repeat part (b) with $\Delta x=0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

2. Let $f(x)=x^{3}$.
(a) Write the difference quotient for $f(x)$.
(b) Let $\Delta x=.01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$
x=-10,-8,-6,-4,-2,0,2,4,6,8,10
$$

Can you guess what $f^{\prime}(x)$ might be based on your table of values? Why or why not?

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

(c) Repeat part (b) with $\Delta x=0.001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

(d) Repeat part (b) with $\Delta x=0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

3. Let $f(x)=x^{4}$.
(a) Write the difference quotient for $f(x)$.
(b) Let $\Delta x=.01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$
x=-10,-8,-6,-4,-2,0,2,4,6,8,10
$$

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

Can you guess what $f^{\prime}(x)$ might be based on your table of values? Why or why not?
(c) Repeat part (b) with $\Delta x=0.001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

(d) Repeat part (b) with $\Delta x=0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	
-10		
-8		
-6		
-4		
-2		
0		
2		
4		
6		
8		
10		

4. Based on your work in parts (a), (b), and (c), what do you think is the correct formula for $\frac{d}{d x} x^{n}$ when n is a positive integer?

These problems are designed to give you additional insight into the derivatives of power functions. In the previous problem you built numerical evidence that supports the conjecture that $\frac{d}{d x} x^{n}=n x^{n-1}$ for positive integer values of n. In this problem we look at negative values of n instead.
5. Let $f(x)=x^{-1}$.
(a) Write the difference quotient for $f(x)$.
(b) Let $\Delta x=.01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$
x=-4,-2,-1,-1 / 2,-1 / 3,-1 / 5,1 / 5,1 / 3,1 / 2,1,2,4
$$

Compare the values in your table to the values of $-1 * x^{-2}$. Can you guess what $f^{\prime}(x)$ might be based on your table of values? Why or why not?

x	diff quotient	$-1 * \mathrm{x}^{\wedge}(-2)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

(c) Repeat part (b) with $\Delta x=0.001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	$-1 \star \mathrm{x}^{\wedge}(-2)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

(d) Repeat part (b) with $\Delta x=0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	$-1 * \mathrm{x}^{\wedge}(-2)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

6. Let $f(x)=x^{-2}$.
(a) Write the difference quotient for $f(x)$.
(b) Let $\Delta x=.01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$
x=-4,-2,-1,-1 / 2,-1 / 3,-1 / 5,1 / 5,1 / 3,1 / 2,1,2,4
$$

Compare the values in your table to the values of $-2 * x^{-3}$. Can you guess what $f^{\prime}(x)$ might be based on your table of values? Why or why not?

x	diff quotient	$-2 \star \mathrm{x}^{\wedge}(-3)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

(c) Repeat part (b) with $\Delta x=0.001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	$-2 \star \mathrm{x}^{\wedge}(-3)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

(d) Repeat part (b) with $\Delta x=0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	$-2 \star \mathrm{x}^{\wedge}(-3)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

7. Let $f(x)=x^{-3}$.
(a) Write the difference quotient for $f(x)$.
(b) Let $\Delta x=.01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$
x=-4,-2,-1,-1 / 2,-1 / 3,-1 / 5,1 / 5,1 / 3,1 / 2,1,2,4
$$

Compare the values in your table to the values of $-3 * x^{-4}$. Can you guess what $f^{\prime}(x)$ might be based on your table of values? Why or why not?

x	diff quotient	$-3 * \mathrm{x}^{\wedge}(-4)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

(c) Repeat part (b) with $\Delta x=0.001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	$-3 * \mathrm{x}^{\wedge}(-4)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

(d) Repeat part (b) with $\Delta x=0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

x	diff quotient	$-3 \times \mathrm{x}^{\wedge}(-4)$
-4		
-2		
-1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

8. Based on your work in parts (a), (b), and (c), what do you think is the correct formula for $\frac{d}{d x} x^{n}$ when n is a negative integer?
