This set of in-class and homework problems is designed to give you insight into the derivatives of power functions.

- 1. Let $f(x) = x^2$.
 - (a) Write the difference quotient for f(x).
 - (b) Let $\Delta x = .01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$x = -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10$$

Can you guess what f'(x) might be based on your table of values? Why or why not? Write the table in the space below:

x	diff quotient
-10	
- 8	
- 6	
- 4	
- 2	
0	
2	
4	
6	
8	
10	

x	diff quotient
-10	
- 8	
– б	
- 4	
- 2	
0	
2	
4	
6	
8	
10	

х	diff quotient	
-10		
- 8		
– б		
- 4		
- 2		
0		
2		
4		
6		
8		
10		

- 2. Let $f(x) = x^3$.
 - (a) Write the difference quotient for f(x).

x = -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10

Can you guess what f'(x) might be based on your table of values? Why or why not?

x	diff quotient
-10	
- 8	
– б	
- 4	
- 2	
0	
2	
4	
6	
8	
10	

x	diff quotient
-10	
- 8	
– б	
- 4	
- 2	
0	
2	
4	
6	
8	
10	

х	diff quotient	
-10		
- 8		
– б		
- 4		
- 2		
0		
2		
4		
6		
8		
10		

- 3. Let $f(x) = x^4$.
 - (a) Write the difference quotient for f(x).

$$x = -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10$$

x	diff quotient	
-10		
- 8		
- 6		
- 4		
- 2		
0		
2		
4		
6		
8		
10		

Can you guess what f'(x) might be based on your table of values? Why or why not?

x	diff quotient
-10	
- 8	
- 6	
- 4	
- 2	
0	
2	
4	
6	
8	
10	

(d) Repeat part (b) with $\Delta x = 0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

х	diff quotient
-10	
- 8	
- 6	
- 4	
- 2	
0	
2	
4	
6	
8	
10	

4. Based on your work in parts (a), (b), and (c), what do you think is the correct formula for $\frac{d}{dx}x^n$ when n is a positive integer?

These problems are designed to give you additional insight into the derivatives of power functions. In the previous problem you built numerical evidence that supports the conjecture that $\frac{d}{dx}x^n = nx^{n-1}$ for positive integer values of n. In this problem we look at negative values of n instead.

- 5. Let $f(x) = x^{-1}$.
 - (a) Write the difference quotient for f(x).

(b) Let $\Delta x = .01$. Use the table command on your calculator to build a table of values for the difference quotient at

$$x = -4, -2, -1, -1/2, -1/3, -1/5, 1/5, 1/3, 1/2, 1, 2, 4$$

Compare the values in your table to the values of $-1 * x^{-2}$. Can you guess what f'(x) might be based on your table of values? Why or why not?

х	diff quotient	$-1 \star x^{(-2)}$
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

x	diff quotient	$-1 \star x^{(-2)}$
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

x	diff quoti	ent -1 * x^ (-2)
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

- 6. Let $f(x) = x^{-2}$.
 - (a) Write the difference quotient for f(x).

$$x = -4, -2, -1, -1/2, -1/3, -1/5, 1/5, 1/3, 1/2, 1, 2, 4$$

Compare the values in your table to the values of $-2 * x^{-3}$. Can you guess what f'(x) might be based on your table of values? Why or why not?

х	diff quotient	$-2 \star x^{(-3)}$
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

x	diff quotient	$-2 * x^{(-3)}$
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

х	diff quotient	$-2 * x^{(-3)}$
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

- 7. Let $f(x) = x^{-3}$.
 - (a) Write the difference quotient for f(x).

$$x = -4, -2, -1, -1/2, -1/3, -1/5, 1/5, 1/3, 1/2, 1, 2, 4$$

Compare the values in your table to the values of $-3 * x^{-4}$. Can you guess what f'(x) might be based on your table of values? Why or why not?

х	diff quotient	$-3 \star x^{(-4)}$
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

х	diff quotient	$-3 \star x^{(-4)}$
- 4		
- 2		
- 1		
$-\frac{1}{2}$		
$-\frac{1}{3}$		
$-\frac{1}{5}$		
$\frac{1}{5}$		
$\frac{1}{3}$		
$\frac{1}{2}$		
1		
2		
4		

(d) Repeat part (b) with $\Delta x = 0.0001$. Does the new table give additional evidence for your guess in part (b)? Why or why not?

х	diff	quotient	$-3 \star x^{(-4)}$
- 4			
- 2			
- 1			
$-\frac{1}{2}$			
$-\frac{1}{3}$			
$-\frac{1}{5}$			
$\frac{1}{5}$			
$\frac{1}{3}$			
$\frac{1}{2}$			
1			
2			
4			

8. Based on your work in parts (a), (b), and (c), what do you think is the correct formula for $\frac{d}{dx}x^n$ when n is a negative integer?