Appendix A

1. (a)

x	$\sin x$	$\|x-\sin x\|$	x	$\sin x$	$\|x-\sin x\|$
-1	-0.84	0.16	1	0.84	0.16
-0.5	-0.48	0.02	0.5	0.48	0.02
-0.1	-0.10	0	0.10	0.10	0
-0.01	-0.01	0	0.01	0.01	0

(b) The number 0.16 can replace 0.009 . (So, of course, can any larger number.)
(c) This can be done by graphing the expression $|p(x)-\sin x|$ over the interval $[-0.65,0.65]$.
(d) $(-a, a)=(-0.18,0.18)$-i.e., $a=0.18$-will work here. Any smaller value of a will also do the trick.
3. It's important to notice that although the picture looks the same as in the previous exercise, the units on the x-axis have changed. The effect is that slopes are divided by 10 .
(a) No lines have slope greater than 1 .
(b) Line \mathbf{A} is described by the equation $y=2 x / 15-1 / 2$ and line \mathbf{D} is described by the equation $y=-x / 40-1 / 8$. These lines intersect at the point $(45 / 19,-7 / 38)$.
5. Each answer below is only one possibility-there are others.
(a) Choosing xrange $[1.56,1.58]$ and yrange $[0,2]$ is one possibility. Thus the window $[1.56,1.58] \times[0,2]$ works.
(b) $[-0.1,0.1] \times[-0.1,0.1]$
(c) $[3.1,3.2] \times[-0.05,0.05]$
(d) $[1,5] \times[-0.01,0.01]$
(e) $[-\pi, 0] \times[-1,0]$
7. Each answer below is only one possibility-there are others.
(a) Choosing xrange $[-0.1,0.1]$ and yrange $[-1,1]$ is one possibility. Thus the window $[-0.1,0.1] \times[-1,1]$ works.
(b) $[0.9,1.1] \times[0.8,1.2]$
(c) $[-1.1,-0.9] \times[0.8,1.2]$
(d) $[0,10] \times[24,26]$
(e) $[-1,1] \times[0,1]$
9. The roots are $x \approx-0.767, x=2$ and $x=4$. (The last two are exact.)
11. The only root is $x \approx 0.73$.
13. f has crosses the x-axis at $x \approx-2.62$ and at $x \approx 2.25$, so these points are roots of f.
15. f has crosses the x-axis at $x \approx 0.74$ and at $x \approx 3.02$, so these points are roots of f.
17. f has crosses the x-axis twice, at $x \approx-1.91$ and $x \approx-0.671$, so these points are the only roots of f.
19. (a) A graph of $f(x)-r(x)$ reveals that $|f(x)-r(x)| \leq 1 / 2$ if $-1 \leq x \leq 1$.
(b) From a graph of $f(x)-r(x)$, one can determine that $|f(x)-r(x)| \leq 0.001$ if $-0.32 \leq x \leq 0.32$. Thus, $a=0.32$.
21. A graph of $f(x)-g(x)$ reveals that $-0.033 \leq f(x)-g(x) \leq 0.018$ if $1 \leq x \leq 3$.
23. The viewing window $[1.9,2.1] \times[3.6,4.4]$ works.
25. The viewing window $[-0.05,0.05] \times[0.9,1.1]$ works.
27. The viewing window $[4.995,5.005] \times[0.9,1.1]$ works.
29. The viewing window $[-0.01,0.01] \times[0.9,1.1]$ works.
31. The viewing window $[0.9,1.1] \times[0.9,1.1]$ works.
33. The viewing window $[-0.1,0.1] \times[0.9,1.1]$ works.
35. $-1 \leq f(x) \leq 1$ for any x. Furthermore, $f(\pi / 2)=1$ and $f(-\pi / 2)=-1$. Since $\pi / 2 \approx 0.157$, the maximum value of f over the interval $[-10,10]$ is 1 ; the minimum value is -1 .
37. It is clear from a graph that f achieves its maximum and minimum values at the left and right endpoints of the interval $[-10,10]$, respectively. Thus, the maximum value of f over the interval $[-10,10]$ is $f(-10)=10 / 21 \approx 0.476$; the minimum value is $f(10)=-10$.
39. The maximum value of f over the interval $[-10,10]$ is $f(0)=0$; the minimum value is $f(10)=-100$.
41. The maximum value of f over the interval $[-10,10]$ is $f(10)=100$; the minimum value is $f(0)=0$.
43. The maximum value of f over the interval $[-10,10]$ is $f(10)=924$; the minimum value is $f(-10) \approx-99.999$.
45. The maximum value of f over the interval $[-10,10]$ is $f(0)=3 / 4$; the minimum value is $f(10)=3 / 104$.
47. The maximum value of f over the interval $[-10,10]$ is $f(10)=11^{3}=1331$; the minimum value is $f(-10)=(-9)^{3}=-729$.
49. The maximum value of f over the interval $[-10,10]$ is $f(10)=10,503$; the minimum value is $f(0)=3$.
51. The maximum value of f over the interval $[-10,10]$ is 72 ; its minimum value is -72 . (The maximum and minimum values occur at $\pm \sqrt{72} \approx \pm 8.485$.)
53. For any $x,-1 \leq \sin x \leq 1$. If $-1 \leq x \leq 1, \cos 1 \leq \cos x \leq 1$. Thus, the maximum value of f over the interval $[-10,10]$ is $f(0)=1$; the minimum value is $f(\pi / 2)=\cos 1 \approx 0.540$.

Appendix B

1. (a) This is the interval $-3 \leq x<2$ (only the left endpoint is included in the interval).
(b) This is the interval $-3<x<2$. (neither the right nor the left endpoint is included in the interval).
(c) This is the interval $-3 \leq x \leq 2$. (both the right and the left endpoints are included in the interval).
(d) This is the interval $-3<x \leq 2$. (only the right endpoint is included in the interval).
2. The set defines an interval of length 10 that is centered at -1 and includes only the left endpoint. Thus, the interval is $[-6,4)$.
3. The set defines an interval of length 7 that is centered at $11 / 2$ and includes both endpoints. Thus, the interval is [2,9].
4. (a) The interval $[-5,3]$ has length 8 and is centered at -1 . Since both endpoints are part of the interval, the interval is the solution set of the absolute value inequality $|x+1| \leq 4$.
(b) The midpoint of the interval $[a, b]$ is $(a+b) / 2=((-5)+3) / 2=-1$.
(c) The radius of the interval $[a, b]$ is $(b-a) / 2=(3-(-5)) / 2=4$.
5. x is a solution of the inequality if $2 x+3 \geq 5$ or $2 x+3 \leq-5$. Now, $2 x+3 \geq 5 \Longrightarrow 2 x \geq 2 \Longrightarrow x \geq 1$. Also, $2 x+3 \leq-5 \Longrightarrow 2 x \leq-8 \Longrightarrow x \leq-4$. Therefore, the solution set of the absolute value inequality, expressed in interval notation, is $(-\infty,-4] \cup[1, \infty)$.
6. The solution set consists of those points that are farther from 2 than from -3 . In interval notation, the solution set is $(-\infty,-1 / 2)$.
7. The solution set consists of those points whose distance from -3 is greater than or equal to their distance from 2. In interval notation, the solution set is $[-1 / 2, \infty)$.
8. The absolute value inequality $|x-11| \leq 0.02$ is equivalent to the double inequality $-0.02 \leq x-11 \leq 0.02$. From this it follows that $10.98 \leq x \leq 11.02$, so $L=10.98$ and $U=11.02$.
9. The double inequality $-3 \leq x \leq 9$ describes an interval of length 12 centered at 3 . Since the interval is closed, the interval is the solution set of the inequality $|x-3| \leq 6$.
10. The double inequality $-7 \leq x \leq-4$ describes an interval of length 3 centered at $-11 / 2$. Since the interval is closed, the interval is the solution set of the inequality $|x+11 / 2| \leq 3 / 2$.
11. The interval has length 10 and is centered at 5 ; it is an open interval. Therefore, the interval is the solution set of the (strict) absolute value inequality $|x-5|<5$.
12. The interval has length 6 and is centered at 1 ; it is an open interval. Therefore, the interval is the solution set of the (strict) absolute value inequality $|x-1|<3$.
13. The interval has length 10 and is centered at 2 ; it is a closed interval. Therefore, the interval is the solution set of the absolute value inequality $|x-2| \leq 5$.
14. The inequality $L \leq x \leq U$ means that x lies in the interval [L, U]. This interval has midpoint $(L+U) / 2$ and radius $(U-L) / 2$ (draw a picture to convince yourself). Thus the original inequality is equivalent to the absolute value inequality

$$
|x-(L+U) / 2| \leq(U-L) / 2
$$

29. The distance between the points is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(3-1)^{2}+(4-2)^{2}}=\sqrt{8}=2 \sqrt{2}$.
30. The distance between the points is $\sqrt{(5-(-2))^{2}+(2-(-5))^{2}}=\sqrt{98}=7 \sqrt{2}$.
31. Since M is the midpoint of the segment joining P and $Q, M=\left(\left(x_{1}+x_{2}\right) / 2,\left(y_{1}+y_{2}\right) / 2\right)$. Therefore,

$$
\begin{aligned}
d(M, P) & =\sqrt{\left(x_{1}-\left(x_{1}+x_{2}\right) / 2\right)^{2}+\left(y_{1}-\left(y_{1}+y_{2}\right) / 2\right)^{2}} \\
& =\sqrt{\left(\frac{x_{1}-x_{2}}{2}\right)^{2}+\left(\frac{y_{1}-y_{2}}{2}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
d(M, Q) & =\sqrt{\left(x_{2}-\left(x_{1}+x_{2}\right) / 2\right)^{2}+\left(y_{2}-\left(y_{1}+y_{2}\right) / 2\right)^{2}} \\
& =\sqrt{\left(\frac{x_{2}-x_{1}}{2}\right)^{2}+\left(\frac{y_{2}-y_{1}}{2}\right)^{2}}
\end{aligned}
$$

The desired conclusion follows from the fact that $\left(x_{2}-x_{1}\right)^{2}=\left(x_{1}-x_{2}\right)^{2}$ and $\left(y_{2}-y_{1}\right)^{2}=\left(y_{1}-y_{2}\right)^{2}$.
35. The circle with radius r and center (a, b) is described by the equation $(x-a)^{2}+(y-b)^{2}=r^{2}$. Thus, $(x-1)^{2}+(y+2)^{2}=9$ is an equation of the circle with radius 3 and center $C=(1,-2)$.
37. Completing the square:

$$
\begin{aligned}
3 x^{2}+3 y^{2}+4 y=7 & \Longleftrightarrow x^{2}+y^{2}+4 y / 3=7 / 3 \\
& \Longleftrightarrow x^{2}+(y+2 / 3)^{2}=25 / 9 \\
& \Longleftrightarrow \sqrt{x^{2}+(y+2 / 3)^{2}}=5 / 3
\end{aligned}
$$

Thus the equation represents the circle with radius $5 / 3$ and center $(0,-2 / 3)$.
39. Most of the work is done in Example 7 of this section. (See the picture there.) All that remains is to see that the distance from m_{1} to m_{2} is $a / 2$. A look at the coordinates of m_{1} and m_{2} shows that this is so.
41. The set is a closed interval with radius 5 centered at 2 . Therefore, in interval notation, the set is $[-3,7]$.
43. The set is an open interval with radius b centered at a. Therefore, in interval notation, the set is $(a-b, a+b)$.
45. There are various ways to do this. Here's a way that involves solving a quadratic equation. (Another-similar-approach uses the Pythagorean rule.)
The points we want are of the form $(x,-3)$, for some unknown values of x. Which values of x work?
The fact about distance says that

$$
13=\sqrt{(x-1)^{2}+(-3-2)^{2}}=\sqrt{(x-1)^{2}+25} .
$$

Squaring both sides gives the quadratic equation $x^{2}-2 x-143=0$. To solve this, either factor or use the quadratic equation; the result is that $x=13$ or $x=-11$.
Conclusion: The two points we're looking for are $(13,-3)$ and $(-11,-3)$.
47. The interval between -5 and 3 has length 8 and center -1 . The desired set is the points that are not part of this interval. Thus, the given set is the solution of the absolute value inequality $|x+1|>4$.
49. The given set can also be described by the double inequality $-7<x<5$. This is an interval of length 12 with center at -1 . Therefore, the set is the solution of the absolute value inequality $|x+1|<6$.
51. Let T denote the temperature in the room. Then, $|T-100|$ is how close T is to $100^{\circ} \mathrm{F}$ and $|T-32|$ is how close T is to freezing. Therefore, the given sentence is equivalent to the inequality $|T-100|<|T-32|$.
53. For any $r,|r| \geq 0 \Longrightarrow|r| \geq-2$ is a true statement.
55. If $3<r<7$, then If $r>0,|r|=r$. Therefore, $r>3 \Longrightarrow|r|>3$ is a true statement.
57. No. The hypothesis $-3 \leq x \leq 11$ allows the possibility that $x=10$, a possibility that violates the given inequality.
59. No. The hypothesis $-3 \leq x \leq 11$ allows the possibility that $x=0$, a possibility that violates the given inequality.
61. Yes. The hypothesis $-3 \leq x \leq 11$ implies that $|x| \leq 11$. Thus, the given inequality must be true.
63. No. The hypothesis $-3 \leq x \leq 11$ allows the possibility that $x=0$, a possibility that violates the given inequality.
65. No, the hypothesis $-3 \leq x \leq 11$ means that $x=11$ could be true. However, this value of x violates the given inequality. [NOTE: The double inequality $-3 \leq x \leq 11$ is equivalent to the absolute value inequality $|x-4| \leq 7$.]
67. The inequality $|s| \leq 1$ is not true for all values of s that satisfy the inequality $-2 \leq s \leq 1$. For example, $s=-3 / 2$ satisfies the condition that $-2 \leq s \leq 1$, but $|s|=3 / 2>1$.
69. For any number $s,|s| \geq 0$.
71. We'll work with inequalities:

$$
\begin{aligned}
& |x-3| \leq 0.005 \quad \Longleftrightarrow \quad 2.995 \leq x \leq 3.005 \\
& |y-2| \leq 0.003 \quad \Longleftrightarrow \quad 1.997 \leq x \leq 2.003
\end{aligned}
$$

Adding the last two inequalities gives

$$
4.992 \leq x+y \leq 5.008
$$

or, equivalently,

$$
|(x+y)-5| \leq 0.008
$$

Appendix C

1. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be points on a vertical line. Since the line is vertical, $x_{1}=x_{2}$. Therefore, the denominator of the expression for the slope of a line ($x_{2}-x_{1}$) will be zero. This means that the slope is undefined.
2. (a) Since the y-coordinate of both points is the same, the line is horizontal. Thus, the line is described by the equation $y=3$.
(b) The slope of the line is $(3-3) /(1-(-2))=0$.
(c) The line intersects the y-axis at the point $(0,3)$. This point is the y-intercept of the line ℓ.
(d) The line ℓ does not intersect the x-axis, so it does not have an x-intercept.
3. (a) If $A=0$, the equation becomes $B y=C$ or, equivalently, $y=C / B$ - the equation of a horizontal line.
(b) If $B=0$, the equation becomes $A x=C$ or, equivalently, $x=C / A$ - the equation of a vertical line.
(c) If $A \neq 0$ and $B \neq 0$, the equation can be written in the form $y=(-A / B) x+C / B-$ the equation of a line with slope $-A / B$.
4. Since $A=(1,3)$ and $C=(6,2)$, the slope of the secant line through these two points is $(2-3) /(6-1)=-1 / 5$. The equation of the line that passes through the point $(1,3)$ with slope $-1 / 5$ is $y=(-1 / 5)(x-1)+3=-x / 5+16 / 5$.
5. Since $C=(6,2)$ and $D=(9,3)$, the slope of the secant line through these two points is
$(3-2) /(9-6)=1 / 3$. The equation of the line that passes through the point $(6,2)$ with slope $1 / 3$ is $y=(1 / 3)(x-6)+2=x / 3$.
6. The slope of the secant line is $(3-\sqrt{8.9}) /(9-8.9)=10(3-\sqrt{8.9})$. Thus, the secant line is described by the equation $y=10(3-\sqrt{8.9})(x-9)+3=10(3-\sqrt{8.9}) x+(90 \sqrt{8.9}-267)$.
7. The slope of the secant line is $(\cos (1.5)-\cos (1.3)) /(1.5-1.3)=5(\cos (1.5)-\cos (1.3))$. Thus, the secant line is described by the equation $y=5(\cos (1.5)-\cos (1.3))(x-1.5)+\cos (1.5)$.
8. (a)

x	-10	-3	0	1	5	7
$f(x)$	0.544	-0.141	0	0.841	-0.959	0.657

(b)

Δx	7	3	1	4	2
Δy	-0.685	0.141	0.841	-1.80	1.62
$\Delta y / \Delta x$	$0 .-098$	0.047	0.841	-0.450	0.81

(c) The values of $\Delta y / \Delta x$ are not (even approximately) constant.
(d)

x	1.35	1.37	1.40	1.41	1.43	1.47
$f(x)$	0.976	0.980	0.985	0.987	0.990	0.995

(e)

Δx	0.02	0.03	0.01	0.02	0.04
Δy	0.004	0.0054	002	0.003	0.005
$\Delta y / \Delta x$	0.209	0.185	0.165	0.150	0.120

(f) The values of $\Delta y / \Delta x$ are (very!) approximately constant.
17. The cosine graph resembles the line that passes through the point $(1, \cos (1)) \approx(1,0.5403)$ with slope $(\cos 1.01-\cos 0.99) /(1.01-0.99) \approx-0.8415$. An equation of this line is $y=-0.8415(x-1)+0.5403$.
19. $y=12(x-2)+8$ The graph $y=x^{3}$ resembles the line that passes through the point $(2,8)$ with slope $\left(2.01^{3}-1.99^{3}\right) /(2.01-1.99) \approx 12$. An equation of this line is $y=12(x-2)+8$.
21. The slope of L is $(0-2) /(-2-1)=2 / 3$.
23. Since L passes through the point $(1,2)$ with slope $2 / 3, L$ can be described by the equation $y=\frac{2}{3}(x-1)+2$.
25. No. L passes through the point $(\pi, 2 \pi)$ if and only if $(\pi, 2 \pi)$ is a solution of the equation $y=2(x-1) / 3+2$. Since it is not, L does not pass through this point.
27. (a) The given information implies that the line is described by the equation $y=2(x-2) / 3+1$.
(b) The perpendicular line has slope $-3 / 2$. Therefore, it is described by the equation $y=-3(x-2) / 2+1$.
29. Lines parallel to the y-axis are vertical. The vertical line that passes through the point $(2,4)$ is $x=2$.
31. The line $y=5 x+7$ has slope 5 , so lines perpendicular to it have slope $-1 / 5$. The line with slope $-1 / 5$ that passes through the point $(-3,1)$ is described by the equation $y=-(x+3) / 5+1=-x / 5+2 / 5$.
33. (a) The x-intercept of a line is the point where $y=0$. Thus, the x-intercept is $(a-b / m, 0)$.
(b) The y-intercept of a line is the point where $x=0$. Thus, the y-intercept is $(0, b-m a)$.
(c) In point-slope form, the equation of the line is $y=m x+(b-m a)$.
35. If $k \neq 0$, the equation $2 x+k y=-4 k$ is equivalent to the equation $y=(-2 / k) x-4$. Thus, the line will have slope m is $k=-2 / m$.
37. If $k \neq 0$, the equation $2 x+k y=-4 k$ is equivalent to the equation $y=(-2 / k) x-4$. Thus, in this case, the line has slope $-2 / k \neq 0$. If $k=0$, the equation becomes $2 x=0$ so the solution of the equation is just the point $(0,0)$. Thus, there is no value of k for which the equation describes a horizontal line.

Appendix D

1. $(x+3)\left(\pi x^{17}+7\right)=x \cdot \pi x^{17}+7 x+3 \pi x^{17}+21=\pi x^{18}+3 \pi x^{17}+7 x+21$
2. Yes, it is an expression that involves only the sum of constants and constant multiples of positive interger powers of x.
3. $T(w)=3+4 w=3+4 w^{1}$. Since the highest power of the variable is 1 , this is the degree of the polynomial.
4. Since the highest power of the variable is 5 , this is the degree of the polynomial.
5. Since the highest power of the variable is 123 , this is the degree of the polynomial.
6. No. If $x+2$ were a factor of p, then p could be written in the form $p(x)=(x+2) q(x)$, where q is a cubic polynomial. This implies that $x+2$ is a factor of p if and only if $p(-2)=0$. However, since $p(-2)=-24 \neq 0, x+2$ is not a factor of p.
7. (a) The degree of p is the sum of the degrees of the terms. Thus, the degree of p is
$1+1+2+1+1+3 \cdot 9=33$.
(b) The graph of p crosses the x-axis wherever the graph of one of the terms in the definition of p crosses the x-axis. That is, p crosses the x-axis at $x=0, x=2, x=6, x=-8$, and $x=1$. Thus, the graph of p crosses the x-axis 5 times.
(c) p has a root at x if $p(x)=0$. Using the factored form of p, it is clear that p has roots at $x=-8$, $x=0, x=1, x=2$, and $x=6$.
8. $p(x)=(x+16)(x-2)(x-1 / 3)$
9. This problem is takes some care. In particular, it's important to read the graphs carefully to find the locations of roots.
(a) Graph $\mathrm{C} \leftrightarrow$ (i); Graph $\mathrm{B} \leftrightarrow$ (ii); Graph $\mathrm{A} \leftrightarrow$ (iii); Graph $\mathrm{D} \leftrightarrow$ (iv);
(b) The quadratic polynomial shown in Graph C has roots at -4 and 1 , so $(x+4)$ and $(x-1)$ are factors. Therefore, p must have the form $p(x)=k(x-1)(x+4)$ for some constant k. To find the value of k, notice from the graph that $p(0)=-4=k(-1)(4)$. Thus, $k=1$ and $p(x)=(x-1)(x+4)$.
(c) Since the roots are at $-1,1$, and 2, and the polynomial is cubic, it can be written in the form $q(x)=k(x+1)(x-1)(x-2)$. To find k, note from Graph D that (apparently) $q(0)=2$; from this it follows that $k=1$. Thus, the equation is $q(x)=(x+1)(x-1)(x-2)=x^{3}-2 x^{2}-x+2$.
(d) From Graph A we see that -1 is the root in question. Therefore

$$
p(x)=(x+r)\left(x^{2}+s\right)=(x+1)\left(x^{2}+s\right)
$$

where s is still to be found. Since $p(2)=15$,

$$
15=(2+1)\left(2^{2}+s\right)=3(4+s)
$$

so $s=1$. Therefore, $p(x)=(x+1)\left(x^{2}+1\right)$.
(e) The function can be written in the form $p(x)=a x^{2}+b x+c$. Plug in the points $(0,2),(-3,5)$ and $(2,10)$ to find the coefficients a, b and c. After some algebraic manipulation the result is $p(x)=x^{2}+2 x+2$.
Another approach is to see that the vertex is at $(-1,1)$, so the equation is of the form $y=k(x+1)^{2}+1$, for some k. Since $p(0)=2$ (see the graph) it follows that $2=k+1$, or $k=1$. Thus $p(x)=(x+1)^{2}+1=x^{2}+2 x+2$.
19. (a) Multiplying out $(x+a)^{3}$ and simplifying gives $x^{3}+3 a x^{2}+3 a^{2} x+a^{3}$, as desired.
(b) If $p(x)=x^{3}+3 x^{2}+3 x+1$, then $p(-1)=-1+3-3+1=0$.
(c) Long dividing $p(x)$ by $(x+1)$ gives $p(x)=(x+1)\left(x^{2}+2 x+1\right)$.
(d) Fully factoring $p(x)$ gives $p(x)=(x+1)(x+1)(x+1)=(x+1)^{3}$.
21. Since $f(x)=(x-1)(x+2), f(x)>0$ if $x-1$ and $x+2$ have the same sign (i.e., both are positive or both are negative). Thus, $f(x)>0$ if $x<-2$ or $x>1$.
23. Since $(x-1)^{2}>0$ for all $x \neq 1, g(x)>0$ if $x+3>0$ and $x \neq 1$.
25. Since $(x+3)^{2}>0$ for all $x \neq-3, m(x)>0$ if $x^{2}-x-4>0$ and $x \neq-3$. Now, $x^{2}-x-4=(x-(1-\sqrt{17}) / 2)(x-(1+\sqrt{17}) / 2)$ so $m(x)>0$ if $x<(1-\sqrt{17}) / 2$ or $(1+\sqrt{17}) / 2<x<3$ or $x>3$.
27. $p(x)=x^{3}-x^{2}-2 x=x\left(x^{2}-x-2\right)=x(x+1)(x-2)$. From the factored form it is apparent that p has roots only at $x=-1, x=0$, and $x=2$.
29. $r(x)=x^{4}-x^{2}=x^{2}\left(x^{2}-1\right)=x^{2}(x-1)(x+1)$. From the factored form it is apparent that r has roots only at $x=-1, x=0$, and $x=1$.
31. $t(x)=x^{4}-2 x^{2}+1=\left(x^{2}-1\right)^{2}$. From the factored form it is apparent that t has roots only at $x=-1$ and $x=1$.
33. $x^{2}+2 x+1=(x+1)^{2}$ so the polynomial has only one root, at $x=-1$.
35. $x^{2}+x+1=\left(x^{2}+x+1 / 4\right)+3 / 4=(x+1 / 2)^{2}+3 / 4$. Thus, this polynomial has no (real) roots.
37. $x^{2}+2 x=a x^{2}+b x+c$ so $a=1, b=2$, and $c=0$. Thus, the quadratic formula implies that this polynomial has roots at $\frac{-2 \pm \sqrt{2^{2}}}{2}$. That is, its roots are $x=-2$ and $x=0$.
39. $x^{2}+2 x+2=a x^{2}+b x+c$ so $a=1, b=2$, and $c=2$. Since $b^{2}-4 a c=4-8=-4<0$, the quadratic formula implies that this polynomial has no real roots.
41. $x^{2}+b x+c=a x^{2}+b x+c$ so $a=1$. Plugging into the quadratic formula yields the following expression for the roots of the polynomial: $\left(-b \pm \sqrt{b^{2}-4 c}\right) / 2$.
43. $x+\frac{1}{x}=\frac{x^{2}}{x}+\frac{1}{x}=\frac{x^{2}+1}{x}$.
45. $3 x\left(1+\frac{5}{x}+\frac{2}{x^{2}}\right)=3 x+15+\frac{6}{x}=\frac{3 x^{2}}{x}+\frac{15 x}{x}+\frac{6}{x}=\frac{3 x^{2}+15 x+6}{x}$
47.

$$
\frac{x-3}{x+5}+\frac{x+6}{x-1}=\frac{(x-3)(x-1)}{(x+5)(x-1)}+\frac{(x+6)(x+5)}{(x-1)(x+5)}=\frac{\left(x^{2}-4 x+3\right)+\left(x^{2}+11 x+30\right)}{x^{2}+4 x-5}=\frac{2 x^{2}+7 x+33}{x^{2}+4 x-5}
$$

49. $x+\frac{1}{x}=\frac{x^{2}}{x}+\frac{1}{x}=\frac{x^{2}+1}{x}$. This function has no real roots because $x^{2}+1>0$ for all x.
50. $3 x\left(1+\frac{5}{x}+\frac{2}{x^{2}}\right)=\frac{3 x^{2}+15 x+6}{x}$. Now, this function has a root if $3 x^{2}+15 x+6=0$. Thus, using the quadratic formula, we conclude that the rational function has roots at $x=(-5 \pm \sqrt{17}) / 2$.
51. $\frac{x-3}{x+5}+\frac{x+6}{x-1}=\frac{2 x^{2}+7 x+33}{x^{2}+4 x-5}$. This rational function will have a root wherever the quadratic polynomial $2 x^{2}+7 x+33$ has a root. However, since $7^{2}-4 \cdot 2 \cdot 33<0$, this polynomial has no real roots. Therefore, the rational function has no real roots either.

Appendix E

1. For any $b>0, b^{0}=1$. Therefore, $64^{0}=1$.
2. $64^{1 / 2}=\sqrt{64}=8$
3. $64^{2 / 3}=\left((64)^{1 / 3}\right)^{2}=4^{2}=16$
4. $16=4^{2} \Longrightarrow x=2$
5. $8=2^{3}=\left(4^{1 / 2}\right)^{3}=4^{3 / 2} \Longrightarrow x=3 / 2$
6. $4 \sqrt{2}=4^{1} \cdot 4^{1 / 4}=4^{1+1 / 4}=4^{5 / 4} \Longrightarrow x=5 / 4$
7. $(\sqrt{a})^{2}=\left(a^{1 / 2}\right)^{2}=a^{1}$
8. $1=a^{0}$
9. $\left(a^{3} / a^{5}\right)^{10}=\left(a^{-2}\right)^{10}=a^{-20}$
10. $a^{-2} a=a^{-2} \cdot a^{1}=a^{-2+1}=a^{-1}$
11. No- 0 is another number that is its own square. Thus $b^{0}=0$ is also consistent with the given statement. It does follow from the calculation above that either $b^{0}=0$ or $b^{0}=1$. However, to show conclusively that $b^{0}=1$ takes a bit more work.
12. Assume $x \geq y$. Then, $\frac{b^{x}}{b^{y}}=\frac{\overbrace{\frac{b \cdot b \cdot \ldots \cdot b}{}}^{x \text {-times }}}{\underbrace{b \cdot b \cdot \ldots \cdot b}_{y \text {-times }}}=\overbrace{b \cdot b \cdot \ldots \cdot b}^{(x-y) \text {-times }}=b^{x-y}$. If $x<y$, the argument is similar.
13. Why is $a^{x} b^{x}=(a b)^{x}$ for positive numbers a and b and a positive integer x ? Here's why:

$$
a^{x} b^{x}=\overbrace{a \cdot a \cdot \ldots \cdot a}^{x \text {-times }} \cdot \overbrace{b \cdot b \cdot \ldots \cdot b}^{x \text {-times }}=\overbrace{a b \cdot a b \cdot \ldots \cdot a b}^{x \text {-times }}=(a b)^{x} .
$$

The middle equality is the crucial one-it's legal because multiplication of real numbers is commutative: we can rearrange the a 's and b 's any way we like.
27. $g(1)=5=A e^{0.2 .1}=A e^{0.2} \Longrightarrow A=5 e^{-0.2}$
29. Recall that $b^{c}=d \Longleftrightarrow \log _{b} d=c$. Therefore, $8^{2 / 3}=4 \Longleftrightarrow \log _{8} 4=2 / 3$.
31. Recall that $b^{c}=d \Longleftrightarrow \log _{b} d=c$. Therefore, $10^{-4}=0.0001 \Longleftrightarrow \log _{10} 0.0001=10^{-4}$.
33. Recall that $\log _{b} c=d \Longleftrightarrow b^{d}=c$. Therefore, $\log _{2} 7=x \Longleftrightarrow 2^{x}=7$.
35. Recall that $\log _{b} c=d \Longleftrightarrow b^{d}=c$. Therefore, $\log _{5} 1 / 25=-2 \Longleftrightarrow 5^{-2}=1 / 25$.
37. Recall that $\log _{b} c=d \Longleftrightarrow b^{d}=c$. Therefore, $\log _{64} 128=7 / 6 \Longleftrightarrow 64^{7 / 6}=128$.
39. For any $b>0, b^{\log _{b} c}=c$. Therefore, $2^{\log _{2} 16}=16$.
41. For any $b>0, b^{\log _{b} c}=c$. Therefore, $10^{\log _{10} 7}=7$.
43. For any $b>0, \log _{b}\left(b^{c}\right)=c$. Therefore, $\log _{5} 5^{3}=3$.
45. $e^{2 \ln x}=\left(e^{\ln x}\right)^{2}=x^{2}$
47. Recall that for any $b>0, \log _{b}(c / d)=\log _{b} c-\log _{b} d, \log _{b} 1=0$, and $\log _{b} b=1$. Therefore, $\ln (1 / e)=\ln 1-\ln e=0-1=-1$.
49. Recall that $\log _{b} c^{d}=d \log _{b} c$. Therefore, $\log _{4} A^{2}=2 \log _{4} A=2 \cdot 2.1=4.2$.
51. Recall that $\log _{b}(c d)=\log _{b} c+\log _{b} d$. Therefore, $\log _{4} 16 A=\log _{4} 16+\log _{4} A=2+2.1=4.1$.
53. For any $b>0, \log _{b} c=d \Longrightarrow b^{d}=\left(b^{-1}\right)^{-d}=c \Longrightarrow(1 / b)^{-d}=c \Longrightarrow \log _{1 / b} c=-d$. Therefore, $\log _{1 / 4} A^{-4}=-4 \log _{1 / 4} A=4 \log _{4} A=8.4$.
55. (a) Rule (B.2) $\Longrightarrow b^{x} / b^{y}=b^{x-y}$
(b) Rule (B.3) $\Longrightarrow\left(b^{x}\right)^{r}=b^{x r}$
57. $f(x)=20 e^{0.1 x}=40 \Longrightarrow e^{0.1 x}=2 \Longrightarrow 0.1 x=\ln 2 \Longrightarrow x=10 \ln 2$
59. $f(x)=20 e^{0.1 x}=10 \Longrightarrow e^{0.1 x}=1 / 2 \Longrightarrow 0.1 x=\ln (1 / 2) \Longrightarrow x=10 \ln (1 / 2)=-10 \ln 2$
61. $h(1)=40=20 e^{k} \Longrightarrow 2=e^{k} \Longrightarrow k=\ln 2$
63. $j(0)=5=A e^{0}=A$. Since $A=5, j(3)=10=5 e^{3 k} \Longrightarrow 2=e^{3 k} \Longrightarrow 3 k=\ln 2 \Longrightarrow k=(\ln 2) / 3$.
65. $\log _{2}(x+5)=3 \Longrightarrow 2^{3}=x+5 \Longrightarrow x=8-5=3$
67. $5^{x-1}=e^{2 x} \Longrightarrow e^{(x-1) \ln 5}=e^{2 x} \Longrightarrow(x-1) \ln 5=2 x \Longrightarrow(2-\ln 5) x=-\ln 5 \Longrightarrow x=$ $-\ln 5 /(2-\ln 5) \approx-4.12082$
69. Let $y=\log _{b} x$. Then, $b^{y}=x \Longrightarrow \log _{a} b^{y}=\log _{a} x \Longrightarrow y \log _{a} b=\log _{a} x \Longrightarrow y=\left(\log _{a} x\right) /\left(\log _{a} b\right)$.
71. $y=\ln \left(\exp \left(x^{2}\right)\right)=x^{2}$ for all x.
73. $\exp (\ln x)=x$ for all $x>0$.
75. $y=\exp \left(\frac{1}{2} \ln x\right)=\sqrt{x}$ for all $x>0$.

Appendix F

1. $\cos (1.2) \approx 0.35$ because 0.35 is the x-coordinate of the point on the unit circle that corresponds to an angle of 1.2 radians.
2. $\tan (2.8)=\sin (2.8) / \cos (2.8) \approx-0.35$
3. $\sin (4.5) \approx-0.98$
4. $x \approx 0.52$ and $x \approx 2.6$
5. $P(t)$ and $P(t+\pi)$ are diametrically opposite points. Therefore, if $P(t)=(x, y)$, then $P(t+\pi)=(-x,-y)$.
6. If $P(t)=(x, y)$, then $\sin t=y$ and $\sin (t+\pi)=-y=-\sin t$.
7. The graph through the origin is that of the sine function.
8. $\tan x=(\sin x) /(\cos x)$, so $\tan x=0$ if and only if $\sin x=0$. This happens at all integer multiples of π.
9. For any $x, \sin (-x)=-\sin x$. Thus, $\sin (-a)=-\sin a=-b$
10. For any $x, \cos (-x)=\cos x$. Thus, $\cos (-c)=\cos c=0.3$.
11. $\sin ^{2} a=(\sin a)^{2}=b^{2}$
12. $\sin 0=0$.
13. $\tan 0=\frac{\sin 0}{\cos 0}=\frac{0}{1}=0$
14. $\cos (3 \pi / 2)=\cos (2 \pi-\pi / 2)=\cos (2 \pi) \cos (-\pi / 2)-\sin (2 \pi) \sin (-\pi / 2)=1 \cdot 0-0 \cdot(-1)=0$
15. $\cos (5 \pi / 6)=\cos (\pi-\pi / 6)=\cos (\pi) \cos (-\pi / 6)-\sin (\pi) \sin (-\pi / 6)$

$$
=\cos (\pi) \cos (\pi / 6)+\sin (\pi) \sin (\pi / 6)=-\frac{\sqrt{3}}{2}+0 \cdot \frac{1}{2}=-\frac{\sqrt{3}}{2}
$$

31. $\tan (3 \pi / 4)=\frac{\sin (3 \pi / 4)}{\cos (3 p i / 4)}=\frac{\sqrt{2} / 2}{-\sqrt{2} / 2}=-1$
32. $\sec (5 \pi / 3)=\frac{1}{\cos (5 \pi / 3)}=\frac{1}{\cos (2 \pi-\pi / 3)}=\frac{1}{\cos (\pi / 3)}=\frac{1}{1 / 2}=2$
33. $\sin (257 \pi / 3)=\sin (86 \pi-\pi / 3)=\sin (86 \pi) \cos (-\pi / 3)+\cos (86 \pi) \sin (-\pi / 3)$
$=0 \cdot \cos (\pi / 3)-1 \cdot \sin (\pi / 3)=-\frac{\sqrt{3}}{2}$
34. $\cos \left(\frac{5 \pi}{12}\right)=\cos \left(\frac{\pi}{4}+\frac{\pi}{6}\right)=\cos (\pi / 4) \cos (\pi / 6)-\sin (\pi / 4) \sin (\pi / 6)=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}$
35. $\sin \left(\frac{\pi}{12}\right)=\sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\sin (\pi / 4) \cos (-\pi / 6)+\cos (\pi / 4) \sin (-\pi / 6)=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}$
36. Yes. For any $x, \sin ^{2} x+\cos ^{2} x=1 \Longrightarrow \cos ^{2} x=1-\sin ^{2} x$.
37. No. $\sin (x-\pi / 2)=\sin x \cos (-\pi / 2)+\cos x \sin (-\pi / 2)=\sin x \cdot 0-\cos x=-\cos x$
38. Yes. If $\cos x \neq 0$, then $\sin ^{2} x+\cos ^{2} x=1 \Longrightarrow \frac{\sin ^{2} x}{\cos ^{2} x}+1=\frac{1}{\cos ^{2} x}$. Since $\tan x=(\sin x) /(\cos x)$ and $\sec x=1 /(\cos x)$, the last equation is equivalent to $\tan ^{2} x+1=\sec ^{2} x$.
39. $\sin (s-t)=\sin s \cos (-t)+\cos s \sin (-t)=\sin s \cos t-\cos s \sin t$
40. $\sin (2 t)=\sin (t+t)=\sin t \cos t+\cos t \sin t=2 \sin t \cos t$

Appendix G

1. Notice that there are two runs of fence of length y and one of length x. Therefore, the cost information implies that $3 \cdot x+2 \cdot 2 \cdot y=3 x+4 y=900$, or, equivalently, $y=225-0.75 x$.
(a) By the formula above, area $=x \cdot y=x \cdot(225-0.75 x)$.
(b) We must have both x and y non-negative, so $x \geq 0$ and $225-0.75 x \geq 0$. Notice that $0.75 x \leq 225 \Longrightarrow x \leq 300$. Thus the domain of A is the closed interval [0, 300].
A is a quadratic function, with roots at $x=0$ and $x=300$. Hence the maximum value of A occurs at the vertex, which lies midway between the roots-i.e., at $x=150$. (The corresponding value of y is $225-0.75 \cdot 150=112.5$ feet; thus the "best" plot has dimensions $150^{\prime} \times 112.5^{\prime}$.)
The corresponding area, therefore, is $A(150)=150 \cdot(225-0.75(150))=16875$ square feet.
(c) With twice as much money we'd have $3 x+4 y=1800 \Longrightarrow y=450-0.75 x$, so $A(x)=x(450-0.75 x)$. As before, A is quadratic, this time with roots at $x=0$ and $x=600$, so the maximum occurs at $x=300$. The maximum area, therefore, is

$$
A(300)=300 \cdot(450-0.75 \cdot 300)=67500 \text { square feet. }
$$

Thus doubling Zeta's money quadruples the area of Zeta's fence.
A couple of notes:

- In both cases Zeta spends half the money on "horizontal" fence and half the money on "vertical" fence.
- The problem can also be done by working with a parameter, say M, for the amount of money available.

3. (a) If x is the length of each cut, the completed box has depth x, "width" $100-3 x$ and "height" $50-2 x$. The volume, therefore, is the function

$$
V(x)=x \cdot(100-3 x) \cdot(50-2 x) .
$$

(b) The volume function is best maximized by plotting V. A plot shows that the volume appears to take its largest value-around 21,058 cubic cm -if $x \approx 9.4 \mathrm{~cm}$.
5. Proportionality means that that $A=k B$ for some constant k. Now $A=1$ and $B=2$ means that $1=2 k$, so $k=1 / 2$, or $A=B / 2$. Similarly, $A=m / C, A=1$, and $C=3$ imply that $1=m / 3$, so $m=3$ and $A=3 / C$.
(a) From $A=(1 / 2) B$ and $A=3 / C$ we see that if $A=10$, then $B=20$ and $C=3 / 10$.
(b) Note that $(1 / 2) B=A=3 / C \Longrightarrow B=6 / C$. This means that B and C are inversely proportional.
(c) If $B=10$, then $A=(1 / 2)(10)=5$ and $C=6 / B=6 / 10=3 / 5$.
7. Consider a circle of radius r. Then, $d=2 r$ is the diameter of the circle and its area is $\pi r^{2}=\pi(d / 2)^{2}=(\pi / 4) d^{2}$. Thus, the area of a circle is proportional to the square of its diameter. (The constant of proportionality is $\pi / 4$.)
9. We are told that if w is the weight of the object and d its distance from the center of the earth, then $w=\frac{k}{d^{2}}$. So if $w=200$ and $d=10000$ we get

$$
200=\frac{k}{10000^{2}} \Longrightarrow k=2 \times 10^{10}
$$

(a) From above, $w=\frac{2 \times 10^{10}}{d^{2}}$.
(b) To get $w=100$ we need $100=2 \times \frac{10^{10}}{d^{2}}$. Solving for d gives $d^{2}=2 \times 10^{8} \Longrightarrow d \approx 14142.1$ miles.

Notice that (b) says that to halve w we must multiply d by $\sqrt{2}$. This is consistent with the proportionality statement in the hypothesis.
11. $T(r)=r / 4+\sqrt{3^{2}+(6-r)^{2}} / 3$ when $0 \leq r \leq 6$.
13. Let r be the radius of the circular pond, S be the surface area of the pond, and V be the volume of water in the pond. Then, $S=\pi r^{2}$ and $V=\pi r^{2} / 2$. Thus, $S=2 V$.
15. Let the numbers be x and y. Since $x+y=45, y=45-x$. Therefore, $x^{2}+y^{2}=x^{2}+(45-x)^{2}$.
17. Assume that the side of the triangle parallel to the x-axis has length 4 m and that the side of the triangle parallel to the y-axis has length 12 m . Then, the third side of the triangle is the line $y=12-3 x$. This means that if $0<x<4$ is the length of the side of the fenced-in rectangular play zone on the x-axis, the area of the play zone is $A(x)=x y(x)=x(12-3 x)=3 x(4-x)$.
19. The noise intensity at a point z textm from its source is $I(z)=k / z^{2}$, where k is a constant of proportionality. We'll assume that $k=1$ for the quieter machine, so that $k=4$ for the noisier machine. Thus, $x \mathrm{~m}$ from the noiser machine, the noise intensity is $I(x)=4 / x^{2}$. Now, a point $x \mathrm{~m}$ from the noiser machine is $100-x \mathrm{~m}$ from the other machine, so the total noise intensity function is $I(x)=4 / x^{2}+1 /(100-x)^{2}$.

