Appendix A

1. (a)

x	sin x	$ x - \sin x $	x	sin x	$ x - \sin x $
-1	-0.84	0.16	1	0.84	0.16
-0.5	-0.48	0.02	0.5	0.48	0.02
-0.1	-0.10	0	0.10	0.10	0
-0.01	-0.01	0	0.01	0.01	0

- (b) The number 0.16 can replace 0.009. (So, of course, can any larger number.)
- (c) This can be done by graphing the expression $|p(x) \sin x|$ over the interval [-0.65, 0.65].
- (d) (-a, a) = (-0.18, 0.18)—i.e., a = 0.18—will work here. Any smaller value of a will also do the trick.
- 3. It's important to notice that although the picture looks the same as in the previous exercise, the units on the *x*-axis have changed. The effect is that slopes are *divided* by 10.
 - (a) No lines have slope greater than 1.
 - (b) Line **A** is described by the equation y = 2x/15 1/2 and line **D** is described by the equation y = -x/40 1/8. These lines intersect at the point (45/19, -7/38).
- 5. Each answer below is only one possibility—there are others.
 - (a) Choosing *xrange* [1.56, 1.58] and *yrange* [0, 2] is one possibility. Thus the window [1.56, 1.58] × [0, 2] works.
 - (b) $[-0.1, 0.1] \times [-0.1, 0.1]$
 - (c) $[3.1, 3.2] \times [-0.05, 0.05]$
 - (d) $[1, 5] \times [-0.01, 0.01]$
 - (e) $[-\pi, 0] \times [-1, 0]$
- 7. Each answer below is only one possibility—there are others.
 - (a) Choosing *xrange* [-0.1, 0.1] and *yrange* [-1, 1] is one possibility. Thus the window $[-0.1, 0.1] \times [-1, 1]$ works.
 - (b) $[0.9, 1.1] \times [0.8, 1.2]$
 - (c) $[-1.1, -0.9] \times [0.8, 1.2]$
 - (d) $[0, 10] \times [24, 26]$
 - (e) $[-1, 1] \times [0, 1]$
- 9. The roots are $x \approx -0.767$, x = 2 and x = 4. (The last two are exact.)
- 11. The only root is $x \approx 0.73$.
- 13. *f* has crosses the *x*-axis at $x \approx -2.62$ and at $x \approx 2.25$, so these points are roots of *f*.
- 15. f has crosses the x-axis at $x \approx 0.74$ and at $x \approx 3.02$, so these points are roots of f.
- 17. f has crosses the x-axis twice, at $x \approx -1.91$ and $x \approx -0.671$, so these points are the only roots of f.
- 19. (a) A graph of f(x) r(x) reveals that $|f(x) r(x)| \le 1/2$ if $-1 \le x \le 1$.

- (b) From a graph of f(x) r(x), one can determine that $|f(x) r(x)| \le 0.001$ if $-0.32 \le x \le 0.32$. Thus, a = 0.32.
- 21. A graph of f(x) g(x) reveals that $-0.033 \le f(x) g(x) \le 0.018$ if $1 \le x \le 3$.
- 23. The viewing window $[1.9, 2.1] \times [3.6, 4.4]$ works.
- 25. The viewing window $[-0.05, 0.05] \times [0.9, 1.1]$ works.
- 27. The viewing window $[4.995, 5.005] \times [0.9, 1.1]$ works.
- 29. The viewing window $[-0.01, 0.01] \times [0.9, 1.1]$ works.
- 31. The viewing window $[0.9, 1.1] \times [0.9, 1.1]$ works.
- 33. The viewing window $[-0.1, 0.1] \times [0.9, 1.1]$ works.
- 35. $-1 \le f(x) \le 1$ for any x. Furthermore, $f(\pi/2) = 1$ and $f(-\pi/2) = -1$. Since $\pi/2 \approx 0.157$, the maximum value of f over the interval [-10, 10] is 1; the minimum value is -1.
- 37. It is clear from a graph that f achieves its maximum and minimum values at the left and right endpoints of the interval [-10, 10], respectively. Thus, the maximum value of f over the interval [-10, 10] is $f(-10) = 10/21 \approx 0.476$; the minimum value is f(10) = -10.
- 39. The maximum value of f over the interval [-10, 10] is f(0) = 0; the minimum value is f(10) = -100.
- 41. The maximum value of f over the interval [-10, 10] is f(10) = 100; the minimum value is f(0) = 0.
- 43. The maximum value of f over the interval [-10, 10] is f(10) = 924; the minimum value is $f(-10) \approx -99.999$.
- 45. The maximum value of f over the interval [-10, 10] is f(0) = 3/4; the minimum value is f(10) = 3/104.
- 47. The maximum value of f over the interval [-10, 10] is $f(10) = 11^3 = 1331$; the minimum value is $f(-10) = (-9)^3 = -729$.
- 49. The maximum value of f over the interval [-10, 10] is f(10) = 10,503; the minimum value is f(0) = 3.
- 51. The maximum value of f over the interval [-10, 10] is 72; its minimum value is -72. (The maximum and minimum values occur at $\pm\sqrt{72} \approx \pm 8.485$.)
- 53. For any $x, -1 \le \sin x \le 1$. If $-1 \le x \le 1$, $\cos 1 \le \cos x \le 1$. Thus, the maximum value of f over the interval [-10, 10] is f(0) = 1; the minimum value is $f(\pi/2) = \cos 1 \approx 0.540$.

Appendix B

- 1. (a) This is the interval $-3 \le x < 2$ (only the left endpoint is included in the interval).
 - (b) This is the interval -3 < x < 2. (neither the right nor the left endpoint is included in the interval).
 - (c) This is the interval $-3 \le x \le 2$. (both the right and the left endpoints are included in the interval).
 - (d) This is the interval $-3 < x \le 2$. (only the right endpoint is included in the interval).
- 3. The set defines an interval of length 10 that is centered at -1 and includes only the left endpoint. Thus, the interval is [-6, 4).
- 5. The set defines an interval of length 7 that is centered at 11/2 and includes both endpoints. Thus, the interval is [2, 9].
- 7. (a) The interval [-5, 3] has length 8 and is centered at -1. Since both endpoints are part of the interval, the interval is the solution set of the absolute value inequality $|x + 1| \le 4$.
 - (b) The midpoint of the interval [a, b] is (a + b)/2 = ((-5) + 3)/2 = -1.
 - (c) The radius of the interval [a, b] is (b a)/2 = (3 (-5))/2 = 4.
- 9. x is a solution of the inequality if 2x + 3 ≥ 5 or 2x + 3 ≤ -5. Now,
 2x + 3 ≥ 5 ⇒ 2x ≥ 2 ⇒ x ≥ 1. Also, 2x + 3 ≤ -5 ⇒ 2x ≤ -8 ⇒ x ≤ -4. Therefore, the solution set of the absolute value inequality, expressed in interval notation, is (-∞, -4] ∪ [1, ∞).
- 11. The solution set consists of those points that are farther from 2 than from -3. In interval notation, the solution set is $(-\infty, -1/2)$.
- 13. The solution set consists of those points whose distance from -3 is greater than or equal to their distance from 2. In interval notation, the solution set is $[-1/2, \infty)$.
- 15. The absolute value inequality $|x 11| \le 0.02$ is equivalent to the double inequality $-0.02 \le x 11 \le 0.02$. From this it follows that $10.98 \le x \le 11.02$, so L = 10.98 and U = 11.02.
- 17. The double inequality $-3 \le x \le 9$ describes an interval of length 12 centered at 3. Since the interval is closed, the interval is the solution set of the inequality $|x 3| \le 6$.
- 19. The double inequality $-7 \le x \le -4$ describes an interval of length 3 centered at -11/2. Since the interval is closed, the interval is the solution set of the inequality $|x + 11/2| \le 3/2$.
- 21. The interval has length 10 and is centered at 5; it is an open interval. Therefore, the interval is the solution set of the (strict) absolute value inequality |x 5| < 5.
- 23. The interval has length 6 and is centered at 1; it is an open interval. Therefore, the interval is the solution set of the (strict) absolute value inequality |x 1| < 3.
- 25. The interval has length 10 and is centered at 2; it is a closed interval. Therefore, the interval is the solution set of the absolute value inequality $|x 2| \le 5$.
- 27. The inequality $L \le x \le U$ means that x lies in the interval [L, U]. This interval has *midpoint* (L + U)/2 and *radius* (U L)/2 (draw a picture to convince yourself). Thus the original inequality is equivalent to the absolute value inequality

$$|x - (L+U)/2| \le (U-L)/2$$

29. The distance between the points is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(3 - 1)^2 + (4 - 2)^2} = \sqrt{8} = 2\sqrt{2}$.

31. The distance between the points is $\sqrt{(5 - (-2))^2 + (2 - (-5))^2} = \sqrt{98} = 7\sqrt{2}$.

33. Since *M* is the midpoint of the segment joining *P* and *Q*, $M = ((x_1 + x_2)/2, (y_1 + y_2)/2)$. Therefore,

$$d(M, P) = \sqrt{\left(x_1 - (x_1 + x_2)/2\right)^2 + \left(y_1 - (y_1 + y_2)/2\right)^2}$$
$$= \sqrt{\left(\frac{x_1 - x_2}{2}\right)^2 + \left(\frac{y_1 - y_2}{2}\right)^2}$$

and

$$d(M, Q) = \sqrt{\left(x_2 - (x_1 + x_2)/2\right)^2 + \left(y_2 - (y_1 + y_2)/2\right)^2}$$
$$= \sqrt{\left(\frac{x_2 - x_1}{2}\right)^2 + \left(\frac{y_2 - y_1}{2}\right)^2}$$

The desired conclusion follows from the fact that $(x_2 - x_1)^2 = (x_1 - x_2)^2$ and $(y_2 - y_1)^2 = (y_1 - y_2)^2$.

- 35. The circle with radius r and center (a, b) is described by the equation $(x a)^2 + (y b)^2 = r^2$. Thus, $(x 1)^2 + (y + 2)^2 = 9$ is an equation of the circle with radius 3 and center C = (1, -2).
- 37. Completing the square:

$$3x^{2} + 3y^{2} + 4y = 7 \iff x^{2} + y^{2} + 4y/3 = 7/3$$
$$\iff x^{2} + (y + 2/3)^{2} = 25/9$$
$$\iff \sqrt{x^{2} + (y + 2/3)^{2}} = 5/3.$$

Thus the equation represents the circle with radius 5/3 and center (0, -2/3).

- 39. Most of the work is done in Example 7 of this section. (See the picture there.) All that remains is to see that the distance from m_1 to m_2 is a/2. A look at the coordinates of m_1 and m_2 shows that this is so.
- 41. The set is a closed interval with radius 5 centered at 2. Therefore, in interval notation, the set is [-3, 7].
- 43. The set is an open interval with radius *b* centered at *a*. Therefore, in interval notation, the set is (a b, a + b).
- 45. There are various ways to do this. Here's a way that involves solving a quadratic equation. (Another—similar—approach uses the Pythagorean rule.)

The points we want are of the form (x, -3), for some unknown values of x. Which values of x work? The fact about distance says that

$$13 = \sqrt{(x-1)^2 + (-3-2)^2} = \sqrt{(x-1)^2 + 25}.$$

Squaring both sides gives the quadratic equation $x^2 - 2x - 143 = 0$. To solve this, either factor or use the quadratic equation; the result is that x = 13 or x = -11.

Conclusion: The two points we're looking for are (13, -3) and (-11, -3).

- 47. The interval between -5 and 3 has length 8 and center -1. The desired set is the points that are *not* part of this interval. Thus, the given set is the solution of the absolute value inequality |x + 1| > 4.
- 49. The given set can also be described by the double inequality -7 < x < 5. This is an interval of length 12 with center at -1. Therefore, the set is the solution of the absolute value inequality |x + 1| < 6.
- 51. Let *T* denote the temperature in the room. Then, |T 100| is how close *T* is to 100° F and |T 32| is how close *T* is to freezing. Therefore, the given sentence is equivalent to the inequality |T 100| < |T 32|.

- 53. For any $r, |r| \ge 0 \implies |r| \ge -2$ is a true statement.
- 55. If 3 < r < 7, then If r > 0, |r| = r. Therefore, $r > 3 \implies |r| > 3$ is a true statement.
- 57. No. The hypothesis $-3 \le x \le 11$ allows the possibility that x = 10, a possibility that violates the given inequality.
- 59. No. The hypothesis $-3 \le x \le 11$ allows the possibility that x = 0, a possibility that violates the given inequality.
- 61. Yes. The hypothesis $-3 \le x \le 11$ implies that $|x| \le 11$. Thus, the given inequality must be true.
- 63. No. The hypothesis $-3 \le x \le 11$ allows the possibility that x = 0, a possibility that violates the given inequality.
- 65. No, the hypothesis $-3 \le x \le 11$ means that x = 11 could be true. However, this value of x violates the given inequality. [NOTE: The double inequality $-3 \le x \le 11$ is equivalent to the absolute value inequality $|x 4| \le 7$.]
- 67. The inequality $|s| \le 1$ is not true for all values of *s* that satisfy the inequality $-2 \le s \le 1$. For example, s = -3/2 satisfies the condition that $-2 \le s \le 1$, but |s| = 3/2 > 1.
- 69. For any number s, $|s| \ge 0$.
- 71. We'll work with inequalities:

 $|x-3| \le 0.005 \iff 2.995 \le x \le 3.005$ $|y-2| \le 0.003 \iff 1.997 \le x \le 2.003$

Adding the last two inequalities gives

 $4.992 \le x + y \le 5.008$,

or, equivalently,

$$|(x+y) - 5| \le 0.008.$$

Appendix C

- 1. Let (x_1, y_1) and (x_2, y_2) be points on a vertical line. Since the line is vertical, $x_1 = x_2$. Therefore, the denominator of the expression for the slope of a line $(x_2 x_1)$ will be zero. This means that the slope is undefined.
- 3. (a) Since the *y*-coordinate of both points is the same, the line is horizontal. Thus, the line is described by the equation y = 3.
 - (b) The slope of the line is (3-3)/(1-(-2)) = 0.
 - (c) The line intersects the y-axis at the point (0, 3). This point is the y-intercept of the line ℓ .
 - (d) The line ℓ does not intersect the x-axis, so it does not have an x-intercept.
- 5. (a) If A = 0, the equation becomes By = C or, equivalently, y = C/B the equation of a horizontal line.
 - (b) If B = 0, the equation becomes Ax = C or, equivalently, x = C/A the equation of a vertical line.
 - (c) If $A \neq 0$ and $B \neq 0$, the equation can be written in the form y = (-A/B)x + C/B the equation of a line with slope -A/B.
- 7. Since A = (1, 3) and C = (6, 2), the slope of the secant line through these two points is (2-3)/(6-1) = -1/5. The equation of the line that passes through the point (1, 3) with slope -1/5 is y = (-1/5)(x-1) + 3 = -x/5 + 16/5.
- 9. Since C = (6, 2) and D = (9, 3), the slope of the secant line through these two points is (3-2)/(9-6) = 1/3. The equation of the line that passes through the point (6, 2) with slope 1/3 is y = (1/3)(x-6) + 2 = x/3.
- 11. The slope of the secant line is $(3 \sqrt{8.9})/(9 8.9) = 10(3 \sqrt{8.9})$. Thus, the secant line is described by the equation $y = 10(3 \sqrt{8.9})(x 9) + 3 = 10(3 \sqrt{8.9})x + (90\sqrt{8.9} 267)$.
- 13. The slope of the secant line is $(\cos(1.5) \cos(1.3))/(1.5 1.3) = 5(\cos(1.5) \cos(1.3))$. Thus, the secant line is described by the equation $y = 5(\cos(1.5) \cos(1.3))(x 1.5) + \cos(1.5)$.

15. (a)

(a)										_
. ,	x	-	-10	—	3	0	1	5	7	
	f(x)	0	.544	-0.1	141	0	0.841	-0.959	0.657	
(b)										_
	Δx		,	7	(**)	3	1	4	2	
	Δy		-0.	.685	0.1	41	0.841	-1.80	1.62	
	$\Delta y/\Delta$	x	0. –	098	0.0	47	0.841	-0.450	0.81	

(c) The values of $\Delta y / \Delta x$ are not (even approximately) constant.

(d)	

Π	x	1.35	1.37	1.40	1.41	1.43	1.47
	f(x)	0.976	0.980	0.985	0.987	0.990	0.995

(e) п

Δx	0.02	0.03	0.01	0.02	0.04
Δy	0.004	0.0054	002	0.003	0.005
$\Delta y/\Delta x$	0.209	0.185	0.165	0.150	0.120

(f) The values of $\Delta y / \Delta x$ are (very!) approximately constant.

- 17. The cosine graph resembles the line that passes through the point $(1, \cos(1)) \approx (1, 0.5403)$ with slope $(\cos 1.01 \cos 0.99)/(1.01 0.99) \approx -0.8415$. An equation of this line is y = -0.8415(x 1) + 0.5403.
- 19. y = 12(x 2) + 8 The graph $y = x^3$ resembles the line that passes through the point (2, 8) with slope $(2.01^3 1.99^3)/(2.01 1.99) \approx 12$. An equation of this line is y = 12(x 2) + 8.
- 21. The slope of L is (0-2)/(-2-1) = 2/3.
- 23. Since *L* passes through the point (1, 2) with slope 2/3, *L* can be described by the equation $y = \frac{2}{3}(x-1) + 2$.
- 25. No. *L* passes through the point $(\pi, 2\pi)$ if and only if $(\pi, 2\pi)$ is a solution of the equation y = 2(x 1)/3 + 2. Since it is not, *L* does not pass through this point.
- 27. (a) The given information implies that the line is described by the equation y = 2(x-2)/3 + 1.
 - (b) The perpendicular line has slope -3/2. Therefore, it is described by the equation y = -3(x 2)/2 + 1.
- 29. Lines parallel to the y-axis are vertical. The vertical line that passes through the point (2, 4) is x = 2.
- 31. The line y = 5x + 7 has slope 5, so lines perpendicular to it have slope -1/5. The line with slope -1/5 that passes through the point (-3, 1) is described by the equation y = -(x + 3)/5 + 1 = -x/5 + 2/5.
- 33. (a) The x-intercept of a line is the point where y = 0. Thus, the x-intercept is (a b/m, 0).
 - (b) The y-intercept of a line is the point where x = 0. Thus, the y-intercept is (0, b ma).
 - (c) In point-slope form, the equation of the line is y = mx + (b ma).
- 35. If $k \neq 0$, the equation 2x + ky = -4k is equivalent to the equation y = (-2/k)x 4. Thus, the line will have slope *m* is k = -2/m.
- 37. If $k \neq 0$, the equation 2x + ky = -4k is equivalent to the equation y = (-2/k)x 4. Thus, in this case, the line has slope $-2/k \neq 0$. If k = 0, the equation becomes 2x = 0 so the solution of the equation is just the point (0, 0). Thus, there is no value of k for which the equation describes a horizontal line.

Appendix D

- 1. $(x + 3)(\pi x^{17} + 7) = x \cdot \pi x^{17} + 7x + 3\pi x^{17} + 21 = \pi x^{18} + 3\pi x^{17} + 7x + 21$
- 3. Yes, it is an expression that involves only the sum of constants and constant multiples of positive interger powers of x.
- 5. $T(w) = 3 + 4w = 3 + 4w^1$. Since the highest power of the variable is 1, this is the degree of the polynomial.
- 7. Since the highest power of the variable is 5, this is the degree of the polynomial.
- 9. Since the highest power of the variable is 123, this is the degree of the polynomial.
- 11. No. If x + 2 were a factor of p, then p could be written in the form p(x) = (x + 2)q(x), where q is a cubic polynomial. This implies that x + 2 is a factor of p if and only if p(-2) = 0. However, since $p(-2) = -24 \neq 0, x + 2$ is not a factor of p.
- 13. (a) The degree of p is the sum of the degrees of the terms. Thus, the degree of p is $1+1+2+1+1+3\cdot 9=33$.
 - (b) The graph of p crosses the x-axis wherever the graph of one of the terms in the definition of p crosses the x-axis. That is, p crosses the x-axis at x = 0, x = 2, x = 6, x = -8, and x = 1. Thus, the graph of p crosses the x-axis 5 times.
 - (c) p has a root at x if p(x) = 0. Using the factored form of p, it is clear that p has roots at x = -8, x = 0, x = 1, x = 2, and x = 6.

15.
$$p(x) = (x + 16)(x - 2)(x - 1/3)$$

- 17. This problem is takes some care. In particular, it's important to read the graphs carefully to find the locations of roots.
 - (a) Graph C \leftrightarrow (i); Graph B \leftrightarrow (ii); Graph A \leftrightarrow (iii); Graph D \leftrightarrow (iv);
 - (b) The quadratic polynomial shown in Graph C has *roots* at -4 and 1, so (x + 4) and (x 1) are *factors*. Therefore, *p* must have the form p(x) = k(x - 1)(x + 4) for some constant *k*. To find the value of *k*, notice from the graph that p(0) = -4 = k(-1)(4). Thus, k = 1 and p(x) = (x - 1)(x + 4).
 - (c) Since the roots are at -1, 1, and 2, and the polynomial is cubic, it can be written in the form q(x) = k(x + 1)(x 1)(x 2). To find k, note from Graph D that (apparently) q(0) = 2; from this it follows that k = 1. Thus, the equation is $q(x) = (x + 1)(x 1)(x 2) = x^3 2x^2 x + 2$.
 - (d) From Graph A we see that -1 is the root in question. Therefore

$$p(x) = (x+r)(x^2+s) = (x+1)(x^2+s),$$

where *s* is still to be found. Since p(2) = 15,

$$15 = (2+1)(2^2 + s) = 3(4+s),$$

so s = 1. Therefore, $p(x) = (x + 1)(x^2 + 1)$.

(e) The function can be written in the form $p(x) = ax^2 + bx + c$. Plug in the points (0, 2), (-3, 5) and (2, 10) to find the coefficients *a*, *b* and *c*. After some algebraic manipulation the result is $p(x) = x^2 + 2x + 2$.

Another approach is to see that the vertex is at (-1, 1), so the equation is of the form $y = k(x + 1)^2 + 1$, for some k. Since p(0) = 2 (see the graph) it follows that 2 = k + 1, or k = 1. Thus $p(x) = (x + 1)^2 + 1 = x^2 + 2x + 2$.

- (a) Multiplying out (x + a)³ and simplifying gives x³ + 3ax² + 3a²x + a³, as desired.
 (b) If p(x) = x³ + 3x² + 3x + 1, then p(-1) = -1 + 3 3 + 1 = 0.
 (c) Long dividing p(x) by (x + 1) gives p(x) = (x + 1)(x² + 2x + 1).
 - (d) Fully factoring p(x) gives $p(x) = (x + 1)(x + 1)(x + 1) = (x + 1)^3$.
- 21. Since f(x) = (x 1)(x + 2), f(x) > 0 if x 1 and x + 2 have the same sign (i.e., both are positive or both are negative). Thus, f(x) > 0 if x < -2 or x > 1.
- 23. Since $(x 1)^2 > 0$ for all $x \neq 1$, g(x) > 0 if x + 3 > 0 and $x \neq 1$.
- 25. Since $(x + 3)^2 > 0$ for all $x \neq -3$, m(x) > 0 if $x^2 x 4 > 0$ and $x \neq -3$. Now, $x^2 - x - 4 = (x - (1 - \sqrt{17})/2)(x - (1 + \sqrt{17})/2)$ so m(x) > 0 if $x < (1 - \sqrt{17})/2$ or $(1 + \sqrt{17})/2 < x < 3$ or x > 3.
- 27. $p(x) = x^3 x^2 2x = x(x^2 x 2) = x(x + 1)(x 2)$. From the factored form it is apparent that p has roots only at x = -1, x = 0, and x = 2.
- 29. $r(x) = x^4 x^2 = x^2(x^2 1) = x^2(x 1)(x + 1)$. From the factored form it is apparent that r has roots only at x = -1, x = 0, and x = 1.
- 31. $t(x) = x^4 2x^2 + 1 = (x^2 1)^2$. From the factored form it is apparent that t has roots only at x = -1 and x = 1.
- 33. $x^2 + 2x + 1 = (x + 1)^2$ so the polynomial has only one root, at x = -1.
- 35. $x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4$. Thus, this polynomial has no (real) roots.
- 37. $x^2 + 2x = ax^2 + bx + c$ so a = 1, b = 2, and c = 0. Thus, the quadratic formula implies that this polynomial has roots at $\frac{-2 \pm \sqrt{2^2}}{2}$. That is, its roots are x = -2 and x = 0.
- 39. $x^2 + 2x + 2 = ax^2 + bx + c$ so a = 1, b = 2, and c = 2. Since $b^2 4ac = 4 8 = -4 < 0$, the quadratic formula implies that this polynomial has no real roots.
- 41. $x^2 + bx + c = ax^2 + bx + c$ so a = 1. Plugging into the quadratic formula yields the following expression for the roots of the polynomial: $\left(-b \pm \sqrt{b^2 4c}\right)/2$.

43.
$$x + \frac{1}{x} = \frac{x^2}{x} + \frac{1}{x} = \frac{x^2 + 1}{x}$$
.
45. $3x \left(1 + \frac{5}{x} + \frac{2}{x^2}\right) = 3x + 15 + \frac{6}{x} = \frac{3x^2}{x} + \frac{15x}{x} + \frac{6}{x} = \frac{3x^2 + 15x + 6}{x}$
47.
 $\frac{x - 3}{x + 5} + \frac{x + 6}{x - 1} = \frac{(x - 3)(x - 1)}{(x + 5)(x - 1)} + \frac{(x + 6)(x + 5)}{(x - 1)(x + 5)} = \frac{(x^2 - 4x + 3) + (x^2 + 11x + 30)}{x^2 + 4x - 5} = \frac{2x^2 + 7x + 33}{x^2 + 4x - 5}$
49. $x + \frac{1}{x} = \frac{x^2}{x} + \frac{1}{x} = \frac{x^2 + 1}{x}$. This function has no real roots because $x^2 + 1 > 0$ for all x .

- 51. $3x\left(1+\frac{5}{x}+\frac{2}{x^2}\right) = \frac{3x^2+15x+6}{x}$. Now, this function has a root if $3x^2+15x+6=0$. Thus, using the quadratic formula, we conclude that the rational function has roots at $x = \left(-5 \pm \sqrt{17}\right)/2$.
- 53. $\frac{x-3}{x+5} + \frac{x+6}{x-1} = \frac{2x^2 + 7x + 33}{x^2 + 4x 5}$. This rational function will have a root wherever the quadratic polynomial $2x^2 + 7x + 33$ has a root. However, since $7^2 4 \cdot 2 \cdot 33 < 0$, this polynomial has no real roots. Therefore, the rational function has no real roots either.

Appendix E

- 1. For any b > 0, $b^0 = 1$. Therefore, $64^0 = 1$. 3. $64^{1/2} = \sqrt{64} = 8$ 5. $64^{2/3} = ((64)^{1/3})^2 = 4^2 = 16$ 7. $16 = 4^2 \implies x = 2$ 9. $8 = 2^3 = (4^{1/2})^3 = 4^{3/2} \implies x = 3/2$ 11. $4\sqrt{2} = 4^1 \cdot 4^{1/4} = 4^{1+1/4} = 4^{5/4} \implies x = 5/4$ 13. $(\sqrt{a})^2 = (a^{1/2})^2 = a^1$ 15. $1 = a^0$ 17. $(a^3/a^5)^{10} = (a^{-2})^{10} = a^{-20}$ 19. $a^{-2}a = a^{-2} \cdot a^1 = a^{-2+1} = a^{-1}$
- 21. No—0 is another number that is its own square. Thus $b^0 = 0$ is also consistent with the given statement. It *does* follow from the calculation above that either $b^0 = 0$ or $b^0 = 1$. However, to show conclusively that $b^0 = 1$ takes a bit more work.

23. Assume $x \ge y$. Then, $\frac{b^x}{b^y} = \underbrace{\frac{b \cdot b \cdot \dots \cdot b}{b \cdot b \cdot \dots \cdot b}}_{y-\text{times}} = \underbrace{b \cdot b \cdot \dots \cdot b}_{y-\text{times}} = b^{x-y}$. If x < y, the argument is similar.

25. Why is $a^{x}b^{x} = (ab)^{x}$ for positive numbers a and b and a positive integer x? Here's why:

$$a^{x}b^{x} = \overbrace{a \cdot a \cdot \ldots \cdot a}^{x \text{-times}} \cdot \overbrace{b \cdot b \cdot \ldots \cdot b}^{x \text{-times}} = \overbrace{ab \cdot ab \cdot \ldots \cdot ab}^{x \text{-times}} = (ab)^{x}$$

The middle equality is the crucial one—it's legal because multiplication of real numbers is commutative: we can rearrange the a's and b's any way we like.

- 27. $g(1) = 5 = Ae^{0.2 \cdot 1} = Ae^{0.2} \implies A = 5e^{-0.2}$
- 29. Recall that $b^c = d \iff \log_b d = c$. Therefore, $8^{2/3} = 4 \iff \log_8 4 = 2/3$.
- 31. Recall that $b^c = d \iff \log_b d = c$. Therefore, $10^{-4} = 0.0001 \iff \log_{10} 0.0001 = 10^{-4}$.
- 33. Recall that $\log_b c = d \iff b^d = c$. Therefore, $\log_2 7 = x \iff 2^x = 7$.
- 35. Recall that $\log_b c = d \iff b^d = c$. Therefore, $\log_5 1/25 = -2 \iff 5^{-2} = 1/25$.
- 37. Recall that $\log_b c = d \iff b^d = c$. Therefore, $\log_{64} 128 = 7/6 \iff 64^{7/6} = 128$.
- 39. For any b > 0, $b^{\log_b c} = c$. Therefore, $2^{\log_2 16} = 16$.
- 41. For any b > 0, $b^{\log_b c} = c$. Therefore, $10^{\log_{10} 7} = 7$.
- 43. For any b > 0, $\log_b (b^c) = c$. Therefore, $\log_5 5^3 = 3$.

45.
$$e^{2\ln x} = \left(e^{\ln x}\right)^2 = x^2$$

- 47. Recall that for any b > 0, $\log_b(c/d) = \log_b c \log_b d$, $\log_b 1 = 0$, and $\log_b b = 1$. Therefore, $\ln(1/e) = \ln 1 \ln e = 0 1 = -1$.
- 49. Recall that $\log_b c^d = d \log_b c$. Therefore, $\log_4 A^2 = 2 \log_4 A = 2 \cdot 2.1 = 4.2$.
- 51. Recall that $\log_b(cd) = \log_b c + \log_b d$. Therefore, $\log_4 16A = \log_4 16 + \log_4 A = 2 + 2.1 = 4.1$.
- 53. For any b > 0, $\log_b c = d \implies b^d = (b^{-1})^{-d} = c \implies (1/b)^{-d} = c \implies \log_{1/b} c = -d$. Therefore, $\log_{1/4} A^{-4} = -4 \log_{1/4} A = 4 \log_4 A = 8.4$.
- 55. (a) Rule (B.2) $\implies b^x/b^y = b^{x-y}$ (b) Rule (B.3) $\implies (b^x)^r = b^{xr}$
- 57. $f(x) = 20e^{0.1x} = 40 \implies e^{0.1x} = 2 \implies 0.1x = \ln 2 \implies x = 10 \ln 2$
- 59. $f(x) = 20e^{0.1x} = 10 \implies e^{0.1x} = 1/2 \implies 0.1x = \ln(1/2) \implies x = 10\ln(1/2) = -10\ln 2$
- 61. $h(1) = 40 = 20e^k \implies 2 = e^k \implies k = \ln 2$
- 63. $j(0) = 5 = Ae^0 = A$. Since A = 5, $j(3) = 10 = 5e^{3k} \implies 2 = e^{3k} \implies 3k = \ln 2 \implies k = (\ln 2)/3$.
- 65. $\log_2(x+5) = 3 \implies 2^3 = x+5 \implies x = 8-5=3$
- 67. $5^{x-1} = e^{2x} \implies e^{(x-1)\ln 5} = e^{2x} \implies (x-1)\ln 5 = 2x \implies (2-\ln 5)x = -\ln 5 \implies x = -\ln 5/(2-\ln 5) \approx -4.12082$
- 69. Let $y = \log_b x$. Then, $b^y = x \implies \log_a b^y = \log_a x \implies y \log_a b = \log_a x \implies y = (\log_a x)/(\log_a b)$.

71.
$$y = \ln(\exp(x^2)) = x^2$$
 for all *x*.

- 73. $\exp(\ln x) = x$ for all x > 0.
- 75. $y = \exp(\frac{1}{2}\ln x) = \sqrt{x}$ for all x > 0.

Appendix F

- 1. $\cos(1.2) \approx 0.35$ because 0.35 is the *x*-coordinate of the point on the unit circle that corresponds to an angle of 1.2 radians.
- 3. $\tan(2.8) = \frac{\sin(2.8)}{\cos(2.8)} \approx -0.35$
- 5. $sin(4.5) \approx -0.98$
- 7. $x \approx 0.52$ and $x \approx 2.6$
- 9. P(t) and $P(t + \pi)$ are diametrically opposite points. Therefore, if P(t) = (x, y), then $P(t + \pi) = (-x, -y)$.
- 11. If P(t) = (x, y), then $\sin t = y$ and $\sin(t + \pi) = -y = -\sin t$.
- 13. The graph through the origin is that of the sine function.
- 15. $\tan x = (\sin x)/(\cos x)$, so $\tan x = 0$ if and only if $\sin x = 0$. This happens at all integer multiples of π .
- 17. For any x, $\sin(-x) = -\sin x$. Thus, $\sin(-a) = -\sin a = -b$
- 19. For any x, $\cos(-x) = \cos x$. Thus, $\cos(-c) = \cos c = 0.3$.

21.
$$\sin^2 a = (\sin a)^2 = b^2$$

- 23. $\sin 0 = 0$.
- 25. $\tan 0 = \frac{\sin 0}{\cos 0} = \frac{0}{1} = 0$ 27. $\cos(3\pi/2) = \cos(2\pi - \pi/2) = \cos(2\pi)\cos(-\pi/2) - \sin(2\pi)\sin(-\pi/2) = 1 \cdot 0 - 0 \cdot (-1) = 0$ 29. $\cos(5\pi/6) = \cos(\pi - \pi/6) = \cos(\pi)\cos(-\pi/6) - \sin(\pi)\sin(-\pi/6)$ $= \cos(\pi)\cos(\pi/6) + \sin(\pi)\sin(\pi/6) = -\frac{\sqrt{3}}{2} + 0 \cdot \frac{1}{2} = -\frac{\sqrt{3}}{2}$ 31. $\tan(3\pi/4) = \frac{\sin(3\pi/4)}{\cos(3pi/4)} = \frac{\sqrt{2}/2}{-\sqrt{2}/2} = -1$ 33. $\sec(5\pi/3) = \frac{1}{\cos(5\pi/3)} = \frac{1}{\cos(2\pi - \pi/3)} = \frac{1}{\cos(\pi/3)} = \frac{1}{1/2} = 2$ 35. $\sin(257\pi/3) = \sin(86\pi - \pi/3) = \sin(86\pi)\cos(-\pi/3) + \cos(86\pi)\sin(-\pi/3)$ $= 0 \cdot \cos(\pi/3) - 1 \cdot \sin(\pi/3) = -\frac{\sqrt{3}}{2}$ 37. $\cos\left(\frac{5\pi}{12}\right) = \cos\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \cos(\pi/4)\cos(\pi/6) - \sin(\pi/4)\sin(\pi/6) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}$ 39. $\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = \sin(\pi/4)\cos(-\pi/6) + \cos(\pi/4)\sin(-\pi/6) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}$ 41. Yes. For any x, $\sin^2 x + \cos^2 x = 1 \implies \cos^2 x = 1 - \sin^2 x$. 43. No. $\sin(x - \pi/2) = \sin x \cos(-\pi/2) + \cos x \sin(-\pi/2) = \sin x \cdot 0 - \cos x = -\cos x$ 45. Yes. If $\cos x \neq 0$, then $\sin^2 x + \cos^2 x = 1 \implies \frac{\sin^2 x}{\cos^2 x} + 1 = \frac{1}{\cos^2 x}$. Since $\tan x = (\sin x)/(\cos x)$ and $\sec x = 1/(\cos x)$, the last equation is equivalent to $\tan^2 x + 1 = \sec^2 x$.
- 47. $\sin(s-t) = \sin s \cos(-t) + \cos s \sin(-t) = \sin s \cos t \cos s \sin t$
- 49. $\sin(2t) = \sin(t+t) = \sin t \cos t + \cos t \sin t = 2 \sin t \cos t$

Appendix G

- 1. Notice that there are two runs of fence of length y and one of length x. Therefore, the cost information implies that $3 \cdot x + 2 \cdot 2 \cdot y = 3x + 4y = 900$, or, equivalently, y = 225 0.75x.
 - (a) By the formula above, area = $x \cdot y = x \cdot (225 0.75x)$.
 - (b) We must have both x and y non-negative, so x ≥ 0 and 225 0.75x ≥ 0. Notice that 0.75x ≤ 225 ⇒ x ≤ 300. Thus the domain of A is the closed interval [0, 300]. A is a *quadratic* function, with roots at x = 0 and x = 300. Hence the *maximum* value of A occurs at the vertex, which lies midway between the roots—i.e., at x = 150. (The corresponding value of y is 225 0.75 · 150 = 112.5 feet; thus the "best" plot has dimensions 150' × 112.5'.) The corresponding area, therefore, is A(150) = 150 · (225 0.75(150)) = 16875 square feet.
 - (c) With twice as much money we'd have $3x + 4y = 1800 \implies y = 450 0.75x$, so A(x) = x(450 0.75x). As before, A is quadratic, this time with roots at x = 0 and x = 600, so the maximum occurs at x = 300. The maximum *area*, therefore, is

 $A(300) = 300 \cdot (450 - 0.75 \cdot 300) = 67500$ square feet.

Thus doubling Zeta's money quadruples the area of Zeta's fence.

A couple of notes:

- In both cases Zeta spends half the money on "horizontal" fence and half the money on "vertical" fence.
- ► The problem can also be done by working with a **parameter**, say *M*, for the amount of money available.
- 3. (a) If x is the length of each cut, the completed box has depth x, "width" 100 3x and "height" 50 2x. The volume, therefore, is the function

$$V(x) = x \cdot (100 - 3x) \cdot (50 - 2x).$$

- (b) The volume function is best maximized by plotting V. A plot shows that the volume appears to take its largest value—around 21,058 cubic cm—if $x \approx 9.4$ cm.
- 5. Proportionality means that that A = kB for some constant k. Now A = 1 and B = 2 means that 1 = 2k, so k = 1/2, or A = B/2. Similarly, A = m/C, A = 1, and C = 3 imply that 1 = m/3, so m = 3 and A = 3/C.
 - (a) From A = (1/2)B and A = 3/C we see that if A = 10, then B = 20 and C = 3/10.
 - (b) Note that $(1/2)B = A = 3/C \implies B = 6/C$. This means that B and C are inversely proportional.
 - (c) If B = 10, then A = (1/2)(10) = 5 and C = 6/B = 6/10 = 3/5.
- 7. Consider a circle of radius *r*. Then, d = 2r is the diameter of the circle and its area is $\pi r^2 = \pi (d/2)^2 = (\pi/4)d^2$. Thus, the area of a circle is proportional to the square of its diameter. (The constant of proportionality is $\pi/4$.)
- 9. We are told that if w is the weight of the object and d its distance from the center of the earth, then $w = \frac{k}{d^2}$ So if w = 200 and d = 10000 we get

$$200 = \frac{k}{10000^2} \implies k = 2 \times 10^{10}.$$

- (a) From above, $w = \frac{2 \times 10^{10}}{d^2}$.
- (b) To get w = 100 we need $100 = 2 \times \frac{10^{10}}{d^2}$. Solving for d gives $d^2 = 2 \times 10^8 \implies d \approx 14142.1$ miles.

Notice that (b) says that to halve w we must multiply d by $\sqrt{2}$. This is consistent with the proportionality statement in the hypothesis.

- 11. $T(r) = r/4 + \sqrt{3^2 + (6-r)^2}/3$ when $0 \le r \le 6$.
- 13. Let *r* be the radius of the circular pond, *S* be the surface area of the pond, and *V* be the volume of water in the pond. Then, $S = \pi r^2$ and $V = \pi r^2/2$. Thus, S = 2V.
- 15. Let the numbers be x and y. Since x + y = 45, y = 45 x. Therefore, $x^2 + y^2 = x^2 + (45 x)^2$.
- 17. Assume that the side of the triangle parallel to the *x*-axis has length 4 m and that the side of the triangle parallel to the *y*-axis has length 12 m. Then, the third side of the triangle is the line y = 12 3x. This means that if 0 < x < 4 is the length of the side of the fenced-in rectangular play zone on the *x*-axis, the area of the play zone is A(x) = xy(x) = x(12 3x) = 3x(4 x).
- 19. The noise intensity at a point *z textm* from its source is I(z) = k/z², where k is a constant of proportionality. We'll assume that k = 1 for the quieter machine, so that k = 4 for the noisier machine. Thus, x m from the noiser machine, the noise intensity is I(x) = 4/x². Now, a point x m from the noiser machine is 100 x m from the other machine, so the total noise intensity function is I(x) = 4/x² + 1/(100 x)².