SECTION 4.1 SLOPE FIELDS; MORE DIFFERENTIAL EQUATION MODELS

84.1 Slope Fields; More Differential Equation Models
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(&) The solution curves are “parallel” to each other in the sense that they differ from each other only in
theirhorizontalposition. Thus, e.g., all the curves have the same slope wher@.

(b) It doesappear that each of the five “upper” curves has the same slopeyheh Carefully draw a

tangent line to any one of the curves at the appropriate point; measure its slope. The result should be 3

(or very close to 3).
The answecould have been predicted in advance. The fact that each curve is a solution to the DE
y' = y means precisely that whegn= 3, y’ = 3, too.

(c) Atthe levely = —4, each curve has slopet. Again, this is exactly what the DE predicts.

(d) All curves appear to be very nealigrizontalneary = 0. The only solution curve that actually

touches the lingy = 0 is the solution curvg = 0 itself. Appropriately, this curve has slope 0
everywhere.

. Sincef (1) = 2, the point(1, 2) = (t, y(t)) is on the solution curve. From the DE, we find that

y'(1) = 12 y(1) + 1 = 3 so the tangent line has slope 3. Since the tangent line passes through the point
(1, 2), it is described by the equatign= 3t — 1.

. The slope of the tangent line@t2, 1) isy' (—2) = (=2)2-y(—2) = 4. Thus,y = 4(t +2) + 1 = 4t +9is

an equation of the tangent line.

. This is the slope field of DE (viiy’ = cosy. Observe that the slope is the same at eawhlue — the

slope at each grid point depends only on the valug. of

. This is the slope field of DE (iii)y’ = ty.

This is the slope field of DE (viii)y’ = sint.
This is the slope field of DE (x)/ = y(1 —y).
All ticks at the same vertical position are parallel.
() Ify(t) = +/t2 4+ C, theny'(t) = t/+/t2 + C =t/y. Similarly, if y(t) = —+/t2 4+ C, then
y'(t) = —t/Vt2+C =t)y.
(€) yt)y =vt2+1
(d) y(t) =+v12 -1

(b) Ifyt) =e ' +Ce 2 theny'(t) = —e ' —2Ce? =e ' —2(et +Ce?) =&t - 2y.
©) yt) = et — g~ 2t+D)

(d) yt) = et — 22 _ gl-2t

(©) y(t) = et 4+ €22 _ g2

(@ yt)=t—1+2e"t

(b) y(t) =t — 1+ 4et

©ytH=t-1

d) Ifyt)=t—1+Ce ', theny(t)=1—-Cel=t—(t—1+Ce!) =t — y(t).

(e)y=t—-y = y't)=1-y (@) =1—(t—y(t) =1—t+yt). Thisimplies that the solution
curve in part (a) is concave up, sing&(t) > 0; the solution curve in part (b) is concave down since
y”’(t) < 0, and the solution curve in part (c) is linear sinéét) = 0.

Copyright© Houghton Mifflin Company. All rights reserved 61



62

CHAPTER 4: USING THE DERIVATIVE

23. (a) Since the outside temperature-i0° C and the coffee is initially 90C, the temperaturg(t) of the
coffee at timet is y(t) = —10+ 100!, For the foam cupk = —0.05, so the temperature reaches
70° C attimet = —In(80/100)/0.05 ~ 4.46 minutes after leaving the store. For the cardboard cup,
k = —0.08, so the temperature reache$ @Waftert = —In(80/100)/0.08 ~ 2.79 minutes.

Aftert = 5 minutes, the coffee in the foam cup440+ 100e~925 ~ 68> C while the coffee in the
paper cup is-10+ 100e~9%4 ~ 57° C.

(b) In the store, the temperature of the coffee at tirigey(t) = 25+ 65e!. Therefore, the coffee reaches
70° C aftert = In(45/65)/k minutes. This implies that Boris’s coffee reache$ @in approximately
7.4 minutes and Natasha’s coffee reaches this temperature in approximétetjrdites.
After t = 5 minutes, Boris’s coffee is approximately°76 and Natasha'’s coffee is approximately
69 C.

(c) If the coffee is to be at least 7@ after 5 minutes outdoork,must be chosen so that
70 < —10+ 1003, This implies thak > In(80/100)/5 ~~ —0.0446.

25. (a) P(t) is an increasing function, s®’(t) must never be negative. The factdr— P(t) causes the rate
of learning to decrease as the value of the performance function approaches the maximum. Thus, the
rate of learning is large whell — P(t) is large and approaches zeroR&) approaches/. The
value of P never exceedd becausé?’ = 0 whenP = M.

(b) If P(t) = M — Ae Xt thenP/(t) = Ake kKt = kAe kKt = k(M — P), as desired.
(c) From the previous part, solutions are of the fdPtt) = M — Ae %03, SinceP(0) = 0.1M, it
follows thatA = 0.9M. ThereforeP(t) = M — 0.9Me 003

We wantt such thatP(t) = 0.9M, so we solve the equatio — 0.9Me %03 — 0.9M for t. The
solution ist = 20In 9~ 44 hours.

27. (a) The DB’ = g — kv can be rewritten in the form’ = (—k)(v —(—9g/ k)) which has the same form as
the DE describing Newton’s law of cooling. Thus, the solution of the DE is

v(t) = % — (9 — v0> ekt

k
incev/ (t) — =9 (8 _ Vo) gkt _ 9 %
(b) Sincey'(t) = vv), ) = Lt + (15— ) €™+ (o— 5+ 7)-
29. Observe that the graph pf= f (x) is decreasing when & x < 2 and increasing when2 x < 5. Thus,
y’ must be negative ofl, 2) and positive o2, 5). Also, observe thay > x on (1, 2) andy < x on (2, 5).
Furthermorey < x2on (2, 5).

The differential equation (a) cannot be the correct answer since the exprégsio) /x is negative on the
interval (2, 5). Similarly, the differential equation (c) cannot be the correct answer because the expression
(x2 — y)/x is not negative over the entire intenv@l 2). On the other hand, the expression— y)/y is

negative on the intervdll, 2) and positive on the interva®, 5). Therefore, the correct differential equation

is (b).

31. For each value of, the slopes do not depend arfi.e., all ticks at the same vertical position are parallel).

33. (b) Since the DE does not depend explicitlytpthe solutions for different initial conditions can be
obtained by horizontal shifts. Thus, singé) = (t + 1)e' is the solution of the DE with the initial
conditiony(0) = 1, y(t) = (t + 2)e'*1 is the solution of the DE with the initial conditiop(0) = 2e.
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SECTION 4.2 MORE ON LIMITS: LIMITS INVOLVING INFINITY AND L'HOPITAL'S RULE

84.2 More on Limits: Limits Involving Infinity and I'H dpital’'s Rule
1. Note thatp(x) = (X + 1)(2 — X) = 2+ X — x? = x2(2/x? + 1/x — 1).

(@) Since lim(2/x?>+1/x —1) = —1and lim x?> = oo, lim p(x) = —c.
X—00 X—00 X—00

(b) Since lim 2/x2+1/x —1) = —1and lim x2 =00, lim p(x) = —oo.
X—>—00 X——00 X—>—00
3. lim w does not exist because Iinc]:@ = oo but lim _f *) - _
x=>2 g(x) x—2- g(X) x—2+ g(X)

. X+2 . X+ 2

5. Nearx = -2, f =—X—2=-— 2). Therefore, lim = lim ———
x) X (x+2) x—>|—2 f(x) x—|>—2 —(X+2)

[NoTE: I'H Opital’s rule could also be used to obtain this result.]

f _

im0 %2 oes not exist because im0 T2 = jim X F2
x—=10g(x)+1 x->1- gX)+1 x-»1- —x+1
f(x)+2 i X—3

x—1t gX) +1  xo1+x—2

=-1.

= 2 but

9. lim i—0

X—00 X2 B

2+3 1

11. Iim —— = ——~.
t—>oo 5 — 4t 2

2
X 1
13 lim =12 _

X—00 X

(0, ]
15. Iim 22X _g

17. Im — =

19, fim M

0, 2B = M o173 A e = O
21. limsin(sinx) =0
x—0
. tanx . . tanx
23. lim —= = lim seéx = 1 so lim cos(—) =cos1l
x—0 X x—0 x—0 X
3 2
X X—2 .3 1
25, fim XX 7% _im 1 _
x—>1X2—3Xx+2 x—12x—3
1 — cosx . sinx
27. lim —— = lm ———— =
x—0 SIN(2X) x—0 2 COg2X)
. e
29. lim m — =0

= lim = i
x>00 X2+ X x—002X+1 x—o00 2

31. Since Iin(x) = Iimlx2 — 1 =0, 'Hopital’s rule can be used to evaluate the desired limit. Thus,
X— X—

S GO N S CON €Y N - fx 3
>|<|Ln1 Z_ 1= >|<an1 o — 2 It appears from the graph th&t(1) ~ 3/2, szIerI 2 1 7
. fx) _ . N , : 2
33. lim = oo since lim f (x) ~ 3.6 and since limx — 4)™“ = oc.
x—4 (X — 4)2 X—4 X4
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39.

41.
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49.
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CHAPTER 4: USING THE DERIVATIVE

. . . . f(x=23)
S limf(x —3)=0and lim f 3) =36, Iim —— =
e I (=9 =0 and lin Fx-+3) =36, fm i)

No. Since lim tanx =ocoand lim tanx = —oo, lim tanx does not exist. Therefore, I®pital’s
X—>7/27 X—m /2 X—>1/2

- . tanx .

rule cannot be used. Moreover, the limits  lim———— have the formyoo/0 so I'Hopital’s rule cannot
x—r/2t X —1w/2

be used to evaluate these limits either.

[NoTE: L'H dpital’s rule can be used only for limits of the forni®@or co/c0.]

No. The limit lim
X—=>mw/2= X =T
[NoTE: L'H dpital’'s rule can be used only for limits of the forni@or co/oc0.]

has the formpo/0 so I'HOpital’s rule cannot be used to evaluate this limit.

Sincef is a hon-constant periodic function, the values ¢X) do not approach a single numbemas
X — OQ.

There are many ways to draw such a graph. Any suitable graph, though, should have a horizontal asymptote
aty = —3 (to the right) and another horizontal asymptotg at 3 (to the left). A simple way to satisfy
condition (iii) is to have the graph pass through—2).

() Yes. The lingg = —1 is a horizontal asymptote hfsinceX lim h(x) = —1.
—00
(b) No. If h were a rational function with a vertical asymptotexat 3 and the propert¥ limh(x) = -1,
—00
thenh would have to be of the form
—Xn + coe
h =
0=yt
for some positive integer. But thenx lim h(x) = —1 notoo.
——00
p andq can be any polynomials such that the coefficient of the highest powemoéach polynomial is

positive, and the degree @fis greater than the degreeapfFor example, the polynomials
p(X) = x2 — 2x + 3 andq(x) = x + 1 have the desired properities:

i, poc) = Jim 60 = m_poo,atx)

p andq can be any polynomials such that the degrep @f less than the degree @f For example, the
polynomialsp(x) = x 4+ 1 andq(x) = x2 + 2 have the desired properitiexs: lim(x) = Xlim g(x) = o0,
— 00 — 00

but lim p(x)/q(x) =0.
X—=00
() Ifa=—21,then limf(x) = 1—3
X—3 4

(b) XIim f (x) = 2 for every value of.
—00

g is not continuous ak = 0 because Iém f(x) #£ Iirra+ f(x).
X—0U" X—>

| 1 1
im e XInx = lim (=) = tm (X)) =1m (=) =0 [Denominator blows up!]
ex ex

X— 00 x—o0 \ eX X— 00 Xx—00 \ X

X —8 1 1
lim ([ —— ) = lim = =3.8/3-3.4=12
X—>8<\3/——2) X—>8<%X2/3) %.8*2/3

. sinx _ COSX .

Im{——— ) =Ilim | —— ) =oc0 [NOTE numerator— 1 and denominator— 0 from
x—0 \ X — sinx x—0\ 1 — cosx
above]
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SECTION 4.2 MORE ON LIMITS: LIMITS INVOLVING INFINITY AND L'HOPITAL'S RULE

61. Iimex_ =|im§=1
x—0 X x—=0 1
. - .
63. lim ——— = lim (& + &) =2
x—0 X x—0
_ 1—co€x . 2cosxsinx . 2co€x—2sirfx
65. Ilm ———— = lim ——— = lim =1
X—0 X2 X—0 2X X—0 2
In x 1
67. lim = lim =1
xLl X2 — X xLl 2x2 — X
69. lim sin(rr X) _ i 7T COSTX) __r
x—1 X2—1 x-1 2X 2
21 iim co§(nx/2) i —3co2(rx/2) sin(rx/2) _o
x—1 sin(mX) x—1 2 cogmx)
) . Inx ) x2
73. Iim x2Inx = lim — = lim —= =0
x— 0t x—0t+ X2 x—0t 2

75. lim x?In(cosx) = 0 since limx? = 0 and limIn(cosx) = 0.
x—0 x—0 x—0

. . Inw)? . 2In .
77. lim w(nw)® = lim (nw)” _ _2  im 2w =0.
w—0t w—0t 1/w w—0t  1/w w—0t
. . 2 — arctarx X2
79. lim X (Z - arctanx) = lim 71/7 = lim —— =1
X— 00 2 X— 00 x—1 x—o00 1 4 X2
. X — sinx . 1 — cosx . sinx
g81. im|{——=-})=Iim—="—=Im —— =M ————— =
x—=0\SinXx X x—=0 XSinx x—0SINX + XCOSX  x—0 2 COSX — X SinX
_ , , (f(x))2 -4 fxf'x)
83. Using I'Hopital’s rule, lim ————— = Im ——— =6.
x—=1 Xxc—-1 x—1 X
x f () . f(x) + xf'(x) )

8 N e =D A e g+ @ -DgX 90

87. lim 2xInx=0s0 lim x®* =’ =1

x— 0t x—0t+
. In(1 . 1 .
89. m "% _im 1 160 iim A+x)*=el=e
x—0 X x—01+ X X—>00
91. lim(Inx)®™ = 0ssince liminx = 0 and limsinx = sin1~ 0.84147.
x—1 X—>1 x—1
o f(x . fx)— (@ . L _
93. lim L = lim M The limit on the right is the definition of '(0).
x—0 X x—0 X—0

95. /(1) does not exist becaudeis not continuous at = 1. Here are the details:
f(l+h) - @

f' (1) = iLim0 h . However, the two-sided limit in the definition df (1) does not exist
_ 2 _ 2 _
because ||mw = |lim w = |lim w = —o0 and
h—0t h h—0t h h—0+ h
. f(l+h) — fQD) . 214+h+2-5 2h—1
im ————=|im ———— = |lm — =o0.
h—0- h h—0- h h—o- h
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84.3 Optimization

1

o w

~

11.

13.

15.

17.

19.

. A function achieves its minimum value over a closed interval at an endpoint of the interval or at a stationary
point within the interval. Sincé’(1) = 0, f (x) could attain its minimum value at= —5,x = 1, orx = 5.

. Yes — the functior fails to be differentiable at = 1 so it has a critical point there.

(a) We can writgy(x) = 5x% — 8x + 4, sog/(x) = 10x — 8. The only stationary point occurs where
g'(x) =10x — 8 =0, i.e., atx = 4/5. Also,g(4/5) = 4/5, so 45 is also the minimum value af.

(b) The previous part showgx) is least ifx = 4/5. This means that the square of the distance (and
hence the distance itself) is leaskif= 4/5, just as we found in Example 3. This minimum distance,
moreover, isy/4/5 = 2//5 ~ 0.8944.

(a) The sketch should suggest tRahas coordinates somewhere néarw, 0.5).

(b) The functionf (x) = x% + (1 — x?)? gives the square of the distance from the origin to the point
(x, 1 — x2) on the parabola. Minimizing in the usual way shows that the minimum distance occurs
if X =+/2/2 andy = 1/2—i.e., P is the point(v/2/2, 1/2).

(c) The line from the origin td®(+/2/2, 1/2) has slope 1v/2. Atx = +/2/2, the parabolg = 1 — x? has
slope—+/2. This means that the two lines are perpendicular, as claimed.

. The equation® = xy andx + y = 10 imply thatP(x) = x(10— x) = 10x — x?; the exercise is
meaningful for 0< x < 10. NowP’(x) = 10— 2x = 0 if x = 5, andP(5) = 25.

The constraint 4+ y = 4 implies thaty = 4 — x. Thus, we wish to find the minimum value of

f(x) = x3+ (4—x) if x > 0. Sincef’(x) = 3x? — 1, the only critical point off in the interval[0, co) is
atx, = 1/4/3 = +/3/3. Sincef”(x,) = 6x, = 2¢/3 > 0, this value ofx is a local minimum point off . It
follows that the minimum value of over the interval0, co) is

f(X) =x2+4—x, =(v/3/3%+4—3/3=4-2,3/9~ 3.6151.

If H(w) = 4w® — 58, H'(w) = 20w* — 30w® = 10w*(2 — 3w). Thus,H’(w) > 0 on the interval
(—00, 2/3) andH’(w) < 0 on the interval2/3, co). This implies thatH is increasing everywhere to the
left of w = 2/3 and decreasing everywhere to the rightvof 2/3. Thereforew = 2/3 is the global
maximum point ofH (w).

If the base of the rectangle is on thexis and has corners @t a, 0) and(a, 0), the area of the inscribed
rectangle isA(a) = 2a - v/3(1 — a) = 2v/3a(1 — a). Now, A'(a) = 2,/3(1 — 2a) = 0 if a = 1/2. Since
A(0) = A(1) = 0 andA(1/2) = +/3/2,a = 1/2 corresponds to the rectange with largest area. This
rectangle has corners at the poiaisl/2, 0), (£1/2, +/3/2); it occupies 50% of the area of the triangle.

Suppose that the side of the triangle in the first quadrant is tangent to the parabola at tke-paist 0.

Then the tangent line is described by the equagiea —2a(x — a) + (1 — a2). Thex-intercept of this

tangent line is the poir(t(l +a?)/2a, 0); its y-intercept is the point0, 1 + a?). By symmetry, the area of
2

. . : . 1 1+a 1+ a?

the triangle corresponding to this tangent lindig) = > % c(1+a% = %.

Since we wish to find the value afthat minimizesA(a), we solve for the stationary points éf:

A@ =0 = a=4+/3/3. SinceA'(x) < 0if0 < x < +/3/3andA'(x) > 0if v/3/3<x < 1,

a = +/3/3 corresponds to the triangle with smallest possible area. Its afa/8/3) = 8./3/9 square

units.

(@) The trajectory formula gives= x — 9.8x?/900. The peak occurs where
dy/dx =1-9.8x/450= 0, i.e., atx ~ 45.92 meters. I ~ 4592, theny ~ 22.96 meters. The ball
lands wherey = 0, i.e., atx ~ 91.84 meters.

(b) The trajectory is a parabola, intersecting ¥haxis atx = 0 andx = 91.84; the peak occurs at
(45.92, 22.96).
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21. (a) Setthe trajectory equation to zero and solvexfdrhere are two solutions»¥= 0 andx = R, where

R is the range.
2002 2092 1—m?
(b) LetR(m) = ﬂ—; let's maximize this form > 0. Well, R'(m) = i—m;
g 1+m? g (1+m?)2
R'(m) = 0 for m = 1. Thus the range is maximum if the initial slope is 1, or, equivalently, the initial
angle is/4.
23. (a) MaximizingA = xy subject to Bx 4+ 2vy = b leads tohx = vy = b/4, sox = b/(4h), y = b/(4v),
and the maximum possible areg = b?/(16hv) square feet.
(b) Minimizing C = 2hx + 2vy subject toxy = a leads tohx = vy. Combining this witha = xy gives
X = »/av/h andy = \/ah/v. Thus the minimum possible cost if2-+ 2vy = 4+/avh.
(c) The two parts are consistent—both say that the best scheme is to spend half the money on east-west
fence and half on north-south fence.

thus

25. The volume of the can ¥ = rr2h and the surface area#s= 27rh + 27r2. Since the can must hold
168 cn¥, 168= nrr2h or h = 168/xr2. This allows us to expres as a function of :

168 336
A(r) = 21 (—2> +27r? = == 4 212
wr r

Therefore, dA 336
— =——+4nr =0
dr iz T
if r = ¥/84/7 ~ 2.99 cm. Sinceq?A/dr? > 0 if r has this value, it corresponds to a local minimum of the
function A(r).) It follows thath = 2.¥84/x ~ 5.98 cm.

27. Letx be the length of a side of the base dnlde the height of the box. Then 1888x + 4h, so
h =25-2x.

(@) The volume of the box ig%h = x2(25 — 2x) = V(x). SinceV’(x) = 50x — 6x2 and
V”(x) = 50— 12x, the volume is maximized i = 25/3; V (25/3) = 1562527 ~ 5787 cnv.
(b) The surface area of the box is2+ 4xh = 2x2 + 4x (25— 2x) = 100x — 6x2 = A(x). Since
A (x) = 100— 12x andA”(x) = —12, the surface area is maximizeit= 25/3;
A(25/3) = 1250/3 cn?.

29. (a) Both conditions are satisfiedxife [0, 6].

(b) The results in part (a) imply that the dam can be built at most 6 miles downstream. If the dam were
constructed at this point, it would W/ (6) = 100 feet wide and (6) = 130 feet high.

(c) W(x) achieves its maximum value on the interf@l 6] atx = 0; W(0) = 220.

(d) W(x) achieves its minimum value on the intery@l 6] atx = 4; W(4) = 60. [W’'(x) = 20(x — 4) and
W’ (x) = 20]

(e) The cost of building the dammiles downstream is
C(x) = KW(x)D(x) = 100k (2x3 — 15x2 4 36x + 22), wherek is a positive constant. Now,
C’(x) = 600k (x2 — 5x + 6) sox = 2 andx = 3 are stationary points &. Finally, since
C(0) < C(3) < C(2) < C(6), the dam should be buik = 0 miles downstream.

31. If xis the length of an edge of the square ansd the radius of the circle, then = 4x + 2zr. We wish to
maximizeS = x2 + nr2. Sincer = (L — 4x)/2r, the equation foS can be written in the form
S(x) = X2+ (L — 4x)%/47, where 0< x < L/4. Now, S (x) = 2x — 2(L —4x)/7r =0if x = L/(4+ 7).
SinceS’(x) = 2+ 8/m > 0, this value o corresponds to a local minimum &f Thus, the maximum
value of Smust occur whex = 0 or whenx = L /4. SinceS(0) = L2/47 andS(L/4) = L?/16, it
follows that the sum of the areas is maximized when all of the wire is used to form a circle.
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84.4 Parametric Equations, Parametric Curves
1. The curve is the upper unit semi-circle plotted frosi, 0) to (0, 1) to (1, 0).
3. The curve is the right unit semi-circle plotted fr@f —1) to (1, 0) to (0, 1).

5. The curve is the unit circle plotted clockwise fr@f) —1) to (0, 1) to (0, —1).

7. In each case the ideais to calcul@éeé/(t)2 + g/(t)2; if the result is constant, then the curve has constant
speed. Among the given choices only the lagt=sin(zt), y = cogrt)—has constant speed.

©

(a) The spacing of bullets suggests tRathoves quickly at = 3,t =4,t =9, andt = 10, and slowly at
t=0,t=1,t =6,andt =7.

(b) The distance along the curve frdre= 2.5 tot = 3.5 seems to be about 3 units. ThRsappears to
travel about 3 units per secondtat 3.

(c) Use the curve to estimate the speedPdadtt = 6. The distance along the curve fram= 5.5 to
t = 6.5 seems to be about 1 unit. ThBsappears to travel about 1 unit per secontl-at6.
11. (a) The resultis the circle of radius 2, centere(at).
(b) Here’s the calculation: Since= a +r cost andy = b +r sint,

(x — a2+ (y — b)2 =r?(cost)? + r?(sint)? = r2.
(c) Settingx = 2+ +/13cog, y = 3+ +/13sint, and 0< t < 27, gives the circle of radius/13,
centered at2, 3).
(d) No proper “curve” results: for atl, (x, y) stays put at2, 3).
13. (@) The origin correspondsta= 0; P(0.1) ~ (0.48, 0.56); P(r/2) = (1, 0). ThusP starts at the origin
and starts off in a northeasterly direction.

(b) Bothx andy are O if and only if both band & are integer multiples of. This occurs only fot = 0,
t =, andt = 2x.

(c) Using thet-interval 0< t < 47 would produce exactly the same curve, but it would be traversed
twice.

15. (@) The curve starts &ty + b, ctg + d) and ends atat; + b, ct; + d).
c
(b) y= E(X—b)+d

a
() x= E(y—d)—Fb
(d) If a=c =0, the parametric curve is just the poibt d).

17. (a) The model would be more realistic if it took wind resistance into account. To do so, one would need
some mathematical information about wind resistance.
(b) Imitate the argument given fdr(t). Notice, too, that ifg(t) = 7 — 16t2, theng” = —32,9(0) = 7,
andg’(0) = 0, just as claimed.

(c) By definition,s(t) = / f'(t)2 + g/(t)2 = /15 + (—321)2 = +/22500+ 10242. Plotting this
function over the interval @& t < 0.661 (when the ball hits the ground) gives almost a horizontal
line—the velocity changes very little over the short time interval.

19. (a) Ifx = f(t) = spt andy = g(t) = 7 — 16t2 it's easy to check directly that” (t) = 0, f/(0) = o,
f(0)=0,9"(t) = —32,¢'(0) = 0, andg(0) = 7. These are the necessary conditions.

(b) The ball reaches home plate whé(t) = spt = 60.5, i.e., att = 60.5/s9 seconds.
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SECTION 4.4 PARAMETRIC EQUATIONS, PARAMETRIC CURVES

(c) The trajectory is parabolic for arsg > 0. (If so = 0, the ball drops straight down.) This can be seen
by eliminatingt. Sincex = sot, t = X/so, SOy = 7 — 162 = 7 — 16x2/s3. This is the equation of a
parabola in thy-plane.

21. Now,x = 200In(3t/4 + 1).

(@) x(t) = 60.5 at timet = 4 (e!2¥/400 _ 1) /3 ~ 0.47098. Thus, the air-dragged ball takes abo0687
seconds longer to reach the plate.

(b) y(t) ~ 3.4508 feet at the time whex(t) = 60.5

(c) Whenx = 60.5, the ball's speed is approximately 1817 ft/sec.

(d) Wheny = 0, x ~ 80.569 feet.
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84.5 Related Rates

1.

5.

11.

13.

@ x+2y=3 = X{M)+2y(t) =0 = X'(t) = =2y'(1).

(b) Using part (a), == —2y' soy’ = —1/2.

(c) Thelinex + 2y = 3 has slope-1/2. Thus, a change afx in x leads to a chang&y = —Ax/2. In
other words, the rate of changewfs —1/2 the rate of change of for all x.

(a) Using implicit differentiation,
X2(1) + y3(t) =1 = 2x(t) X'(t) + 2y(t) y'(t) = 0 = x(t) X'(t) + y(t) Y'(t) = O for all t.

(b) If x(0) =1 andy’(0) = 1, theny(0) = 0 andx’(0) = 0. This means that the moving point is(at 0)
at this time. Since’(0) = 0 andy’(0) = 1, the point is moving vertically upwards.

(c) If x(tp) = 1/2, the equationx? + y2 = 1 implies thaty(tg) = +£+/3/2. If x(tg) = 1/2 andx’(tg) = 1,
the equation in part (a) implies that2+ ?y/(to) = 0. Thus, ify(tg) = +/3/2, y'(to) = —/3/3; if

y(to) = —+/3/2, Y (to) = v/3/3.

(d) At the timeto, the moving point is a€1/2, v/3/2) or at(1/2, —+/3/2). If it is at the first point, then it
is moving to the right and downward. If it is at the second point, then it is moving to the right and
upward.

Using similar triangles,

12 6
=—- = 125=6X+6S = 65S=6X =—> S=X
X+S S

for every timet. Thus, if Hal is 30 feet from the lamppost (i.&.= 30), the length of his shadow is
s = 30 feet. Furthermore, sina&(t) = x/(t) andx’(t) = 7 feet per second, his shadow is lengthening at
the rate of 7 feet per second.

. If L(t) andW(t) are the length and width of the rectangle at timthen the area of the rectangle at tilme

is A(t) = L(t) - W(t) andA'(t) = L' (t)W(t) + L)W' (t) is the rate of change of the rectangle’s area.
Plugging in the values given in the problem, we find that the area of the rectangle is increasing at a rate of
22 cnf/sec.

. LetE(t) be the distance from the intersection of the bicyclist traveling westS#nde the distance from

the intersection of the bicyclist traveling south. From the information given in the problem, we have

E = 4 miles,E’ = —9 miles/hour,S = 3 miles, andS' = 10 miles per hour. The distance between the two
bicyclists D(t) at any time can be determined from the equafith= E? + S?. Differentiating both sides

of this equation with respect to time (using the product rule), we find that

2D-D'=2E-E'+2S-S

Now, at the time of interedd = 5 miles, so we may use the previously given valueEpE’, S, andS, so
5.D'=4.(-9) + 3-10. This implies thaD’ = —g miles per hour. Therefore, the distance between the
bicyclists isdecreasingt a rate of 1.2 miles per hour.

Letx(t) be the distance from the runner to first base at tinfehen the distance from the runner to second
base isD(t) = /902 + x(t)2 and D’ (t) = x(t)x'(t)/D(t). When the runner is halfway to first base

x(t) = 45 andx/(t) = —20 ft/sec, sd’(t) = —20/+/5 = —4./5 ft/sec.

The area of the ring between the two circles is increasing.

Letr (t) be the radius of the inner circle at tih@nd R(t) be the radius of the outer circle at tirheThen,

the area of the ring between the two circledig) = = ((R(t))2 —(r (t))2>. Therefore,

At) =27 (ROR(t) — r(t)r/(t)). At the time whenR = 10, R’ = 2,r =3, andr’ =5, A’ = 10r. Since
this value (the rate of change of the area of the ring between the two circles) is positive, the area is
increasing.
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15. Since both flights are at the same elevation, we may describe the positions of the planes in terms of just
their x- andy-coordinates. The coordinates of the Pachyderm pldmairs after observation are
(0, =36+ 41Q) and the coordinates of the Peterpan plang4te- 455, 0). Thus, the distance between

the two planes at timeis D(t) = v/(—36+ 41Qt)2 + (41 — 45%)2.

(a) At the time of closest approach the planes@m96/15005~ 0.702 nautical miles apart.

(b) Attimet = 6683/75025~ 0.0891 hoursD’(t) = 0 andD”(t) > 0. Thus, the controllers have
approximately 3345 minutes before the time of closest approach.

17. Since the slick has the form of a circular cylinder, the volume of oil in the slivkis Ah whereA is the
area of the slick and is its depth. At the moment of time described in the problem, the slick has area
A = 712 = 7500 square feeth = 0.01 feet, andy’ = —0.001 feet/hour. Since
V'’ = A'lh + Ah' = —5 cubic feet per hour, the surface area is increasing at a rate of
A = (—5+ 2507)/0.01 ~ 78,040 square feet per hour.

19. (a) The volume of the ice I = 47 (3R2T + 3RT? + T3) /3 whereR = 4 inches is the radius of the
iron ball andT = 2 inches is the thickness of the ice. Now, the rate of change of the volume of the ice
can be related to the rate of change in the thickness of the ice by differentiating:
V' =47 (2RRT + R?T' 4+ 2RTT + RT2+ T2T’). SinceR' = 0 andV’ = —10 in*/min, we may
solve forT’ = —10/144x in/min.

(b) The surface area of the iceSs= 47 (R + T)2. Thus, the rate of change of the surface area is
S=8r(R+T)(R+T)=8r-6-T =-10/3in*min.

21. (a) Home plate, the position of the ball, and first base can be considered to be the vertices of a right
triangle. LetS be the length of the hypotenuse of this right triangle &nahdT be the lengths of the
other two sides. At the instant of time when the ball is halfway to third tbase90 feet and
T = 45 feet. Sinces? = F2 + T2, S= /10125 feet. Differentiating both sides of the equation
relatingSto F andT, we obtain 33 =2FF' + 2T T/,0orSS=FF + TT'. Now, T’ = 100 ft/sec
andF’ = 0, soS = (45- 100 /+/10125~ 44.721 ft/sec.

(b) This is similar to part (a) except th&tis now the distance between home plate and the runner. The
ball reaches the point halfway to third base in 0.45 seconds, sa25 ft/sec 0.45 sec= 11.25 feet.
Thus,

S = (11.25- 25+ 45-100) /+/11.25% + 452 ~ 10308 ft/sec.

23. The volume of a cone with radiusand height is V = 7r2h/3. If Ris the ratioh/r, thenV = 7h3/3R2.
ThereforeV'(t) = wh(t)2h’(t)/R2. SinceV'(t) = —10 crf/min whenh'(t) = —2 cm/min and
h(t) = 8 cm, we find thaR2 = 82 /5 soR = 8,/ /5.

25. Ift is measured in hours ad= 0 corresponds to 12:00, the coordinates of the tip of the minute hand are
(Xm(1), Ym(t)) wherexm(t) = 7cog2nt — 7 /2) = 7 sin(2wt) andym(t) = 7 cog2rt). Similarly, the
coordinates of the tip of the hour hand &xg(t), yh(t)) wherexy(t) = 5cognt/6) and
Yh(t) = 5sin(zrt/6). Thus, the distance between the tips of the hands atttisme

D) = / (m® = x00)” + (ym(®) = 00’

- \/74— 70(sin(2nt) cogt/6) + cos2t) sin(rt /6))

= /74— 70sin131/6)

so the distance between the hands at tinsechanging at the rate

o 7700 s_n<13nt>
O=7p0 " 5
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27.

29.

CHAPTER 4: USING THE DERIVATIVE

Thus, at time = 9 the distance between the hands is increasing at the rate of
D’(9) = 770r/12/74 ~ 23.434 feet/hour or approximately 4.6868 inches/minute or 0.3906 feet/minute.

The elevation of the rocket at timhés y = 100 tarv whered is the angle of elevation at tinte Therefore,
since bothy andé are functions of time, the speed of the rocket at tiniey’(t) = 100- 6/ (t) - se@ 6 (t)
wheref’ is rate of change in the angle of elevation at tim&rom the problem statement, we are interested
in the value ofy’ at the time whe® = /3 radians and’ = /15 radians/sec. Thus, at this time,

y' =100-4-7/15= 807 /3 ~ 83776 m/sec.

When the water in the tanklisfeet deep, the volume of water in the tank is

V= %(3 + @+ h))h - 10 = 30h + 5h? cubic feet. (The volume is the cross-sectional area times the length
of the tank. When the water has heigiiithe upper base of the trapezoidal cross-section has length. 3
Thus,V’ = 10(3 + h)h’ cubic feet/minute. Wheh = 1 foot andh’ = 1/48 feet/minuteV’ = 5/6 cubic
feet/minute.
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84.6 Newton’s Method: Finding Roots

1. The first three answers, written as fractions,)are- 9/4, xo = 161/72, andxz = 51841/23184. (The last
answer, by the way, is correct to 9 decimal places!)

3. Newton’s method will converge to the leftmost root (i.e., the root rela88) because the-intercept of the
line tangent to the graph at= 0.95 is to the left of the local maximum point at= —1. (In fact, the
x-intercept of this tangent line is approximatelp.44.) It follows that subsequent iterations of Newton’s
method will converge to the root neatl.88 (all tangent lines based at points to the lefket —1 have
x-intercepts to the left ok = —1).

5. (a) Newton’s method witlkg = 0.5 givesx; = 0.724638x2 = 0.7063515, andsz = 0.706115. Thus, to
three-decimal-place accuracy, the solutior is 0.706.

(b) The functionf has no other roots, becaus&x) = 5x* + 4 > 0 for all x. (This means thaf is
increasing everywhere.)

x2—a x a

7. @ NX =x-— ==4 —.
2X 2 2
(b) If x > \/a, thena/x < a//a= . /a. If x < /a, thena/x > a//a = ./a.

(c) The result follows from simple algebra.
(d) The estimates are 1/3, 17/12, 577408, 665857470832.

9. (a) The first few Newton estimates ar@300000001.02500000010003048781.000000046. They are
accurate to 0, 1, 3, and 7 decimal places respectively.

(b) Newton’s method finds = 1 if Xg > O; it findsx = —1 if xg < O. It fails if xp = 0.

11. xn41 is thex-intercept of the line tangent to the graphfothat passes througﬂxn, f(xn)); this line has
slope f’(xn). Therefore, equatiof? implies thatxn1 = Xn — f (Xn)/f’(Xn).

13. (a) Suppose that@ x < ./a. Then,/ax < ,/a,/a=a = ./a < a/x. Alternatively, suppose that
X > @a>0.Thenx > /Ja =— ./ax>a = ./a> a/x.
2 _

() NOO =x — 22—y _x/2+a/2x = (X +a/x)/2.

2X
(c) If x = 4/a, thenN(x) = X. In other words, Newton’s method “stops”"—as it should—when it finds
theexactroot ,/a.

15. (@) The approximate roots ar®.244817, 380675, and 813807.

(b) Newton’s method jumps back and forth between the estimate® andx = 5. Since
f(2)/f'(2) = -3, andf (5)/f'(5) = 3, applying Newton’s method to 2 gives 5; applying it to 5 gives
2. (Draw the graph to see the situation more clearly.)

(c) f/(1.39) is a small number becauge= 1.39 is near a critical point of (i.e., the tangent line is
nearly horizontal). This means that tkentercept of the tangent line may be far from the current
estimate of the root. This causes Newton’s method to converge slowly.

17. To find the minimum value aj(x), considery’ (x) = —20x 3 + 6x + 1. Forx > 0,
g’ (x) = 60x~* + 6 > 0, sog is concave up fok in [1, 10]. Thusg has at most one local minimum on
[1, 10]; it must occur at the one place where whgtéx) = 0. (Sinceg”(x) > 0, g'(x) is always increasing,
sog’(x) can equal O for at most one valuexf- 0.)

Applying Newton’s method t@’(x), starting fromxg = 2, locates the root ~ 1.3114. Thus
0(1.3114 ~ 8.285 is the minimum value dj.
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19. From a graph, it appears thiabchieves its maximum value between- 2.5 andx = 3. To find the

21.

maximum value off , therefore, we need to identify the corresponding root'ofTo do this, we use the
f/(xn)
f7(Xn)
f7(x) = 2sin(x?) + 4x2 cogx?) + 6x2 cogx?) — 4x*sin(x*). Usingxo = 3, we obtairx; = 2.78236,
Xo = 2.82791 X3 = 2.82467 x4 = 2.82465, andks = 2.82465. Thus, the maximum value 6fis
f(2.82465 = 7.91673.

Newton iteration formulan 1 = X, — , wheref’(x) = 2x sin(x?) + 2x3 cogx?) and

The Newton’s estimates “blow up.” (Draw the graph to see why.) The underlying reason is that if
f (x) = x1/3, then (as algebra shows)— f (x)/f’(x) = —2x.
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84.7 Building Polynomials to Order; Taylor Polynomials

1.

11.

13.

15.
17.
19.
21.

23.

25.

27.

29.

The value and derivatives are (in order)112, 6, 24, 120, 0, 0. Note that all derivatives beyond the fifth
are zero.
(@) Po(x) =14 2(x — 1) + (x — 1)2.

(b) Multiplying out P>(x) givesx?. This happens because the quadratic approximation to a quadratic
function f is f itself.

CF(x) = $x723 and f(x) = —3x5/3. Therefore, sincef (8) = 2, f/(8) = 1/12, andf"(8) = —1/144,
1 1 10 5 1
Pa(x) = 2+ (X = 8) — S (X —-8)2= 5 T3t @xz.

. TheorenR?sayspz(X) = 2+ ba(x — 1)2 4 bg(x — 1)3. The conditiongp,(2) = 1 andp,(2) = 0 imply

together thab, = —3 andbgz = 2.

1
Cf f(X):—l X,n=3, andXOZO'thenpg(X)=1+X+X2+X3.
__‘]_2 _13
Iff(X)=Inx'n=31X0=l,thenP3(X):(X_l)_(X 5 ) +(X 5 ) -
If f(x) =/X,n=3,x — 4, thenPy(x) = 24+ 2% (X—4)2+(X—4)3
= il - y AQ = ] 3 = 4 64 512 )

L) =1;q(x) =1—x?/2
f(x) =€ hast(x) =1+ X, q(x) = 1+ X + x?/2.
f (x) = arcsinx hast(x) = X, q(x) = X.

(a) The graph of an odd function is symmetric about the origin. All graphs shown have that property.

(b) Theeven-ordeMaclaurin polynomiald,, P4, Ps, andPg are the same as the odd-order Maclaurin
polynomialsPy, P3, Ps, andP;. (This happens because the sine function is odd. So, therefore, are all
of its Maclaurin polynomials.)

(a) We'll use the linear approximatid(x) atx = 1. Sincef (1) = 0 and f’(1) = sin 1~ 0.84147,
[(X) =0+ sin1(x — 1); 1(0.5) = 0+ sin 1(—0.5) ~ —0.42074.

(b) Whether the estimate above is too big or too small depends on the concalityetiveerx = 0.5
andx = 1. Notice thatf”(x) = 2x cogx?); thus f”(x) > 0 for x in [—0.5, 1]; so f is concaveup,
and so the linear approximatiemderestimates .f

(c) (1) = 2cos 1~ 1.08060; therefore the quadratic approximatiom at 1 has the form
qx) = f@)+ f'(H(x—1) + %(x — 1?2 =0+sin1(x — 1) + cos Ix — 1)2. Therefore
q(0.5) ~ —0.28566.

Let f (x) = /X andxg = 100. Thenf’(x) = 1/2/X, f (xo) = 10, andf’(xg) = 1/20. Therefore,

f(103) = f(xg+3) ~ f(xg) +3f'(Xg) = 10+ 3/20 = 10.15. A calculator gives/103~ 10.14889; the
difference is 1015— 10.14889= 0.00111.

Let f (x) = sinx andxg = 7/3. Thenf’(x) = cosx, f(xg) = +/3/2 andf’(xg) = 1/2. Therefore,
sin58 = sin(r/3 — 7/90) &~ f (xg) — (77/90) f'(x0) = v/3/2 — 7/180~ 0.84857. A calculator gives
sin 58 ~ 0.84805; the difference is.84857— 0.84805= 0.00052.

(@) £p(t) = 25t; £p(1) = 25;£p(—1) = —25

(b) gp(t) = 25t +t% gp(1) = 26;qp(—1) = —24
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31.

33.

35

37.

39.

41.

43,

w

45.
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(C) £y(t) = 25+ 2t; £,(1) = 27

(a) £(t) = 100 metersf (1) = 100 meters
(b) q(t) = 100— 4.9t2 metersg(1) = 95.1 meters

@f=1f@=0

(b) no,q(l) =3#1

(c) noyr’'(H)=-4+£0

(d) no,s"(1) =4>0butf”’(1) <0

. No. Sincef has alocal maximum at = 1, f/(1) = 0. Sincep’(1) # 0, p cannot be a Taylor polynomial
for f.

The polynomiab(x) = x — x3/6 is the fourth-order Taylor polynomial approximationft¢x) = sinx
based aky = 0. Thereforep(0) = f(0), p'(0) = f’(0), p”(0) = f”(0), p”’(0) = f"7(0), and
p@ 0 = f@(0).

Let f (xX) = sinx andg(x) = x (cosx)1/3. The graphs off andg are almost indistinguishable in a viewing
window centered at the origin becauké) = g(0), f'(0) = g'(0), f”(0) = g”(0), f"/(0) = g”(0), and
f@(0) = g?(0). [NoTE: f®(0) #g®(0)]

Let f (x) = & andg(x) = 5/2 — 3 cosx + 3 cog2x) + 3 sinx — 3 sin(2x). The graphs are almost
indistinguishable in a viewing window centered at the poigtl) becausef (0) = g(0), f'(0) = ¢'(0),
f7(0) = g"(0), £(0) = g”(0), and f @ (0) = g (0). [NoTE: F®(0) # g©(0).]

(@) duoo(x) =1

(b) do1o(X) = X

(€) door(X) = X?/2

(d) The graphs are two lines and a parabola.

(e) If g = achoo(x) + bdo1o(X) + Coo1(x), then

g(0) = ag100(0) + bgp10(0) + cqoo1(0) = a- 1 + 0+ 0 = a; the other parts are similar.
(a) Yes, they are inflection points, singg(1/2) = 0 andp;(3/2) = 0.

(b) Theoren??says thaips(x) = 2+ 0(x — 1) — 6(x — 1)2 + ag(x — 1)3. To findaz we useps(2) = 1.
Butps(2 =2—6+a3=1 = a3 =>5,s0p3(X) =2 —6(x — )%+ 5(x — 1)°.

(c) The inflection point orpz is atx = 7/5.

Copyright© Houghton Mifflin Company. All rights reserved



SECTION 4.8 WHY CONTINUITY MATTERS

84.8 Why Continuity Matters

1.

11.

13.

15.
17.

19.

21.

23.

25.

27.

The graph off has points of discontinuity at3, —1, 1, and 2. Thusf is continuous on the intervals
[_4» _3)1 (_31 _1)! (_17 1)! (19 2)! and(z» 4)

. The functiorh(x) = f (x) + g(x) will be continuous wherevdsoth f andg are continuous. Thus, points

of discontinuity of eitherf or g are possible points of discontinuity bf By examining values df near the
points—3, —1, 1, 2, and 3, we find thdttis continuous on the intervals-4, —3), (—3, —1), (-1, 1), (1, 2),
(2,3), and(3, 4).

. The functiorh(x) = f (x)/g(x) will be continuous whereveg(x) # 0 and bothf andg are continuous.

Thus, the points-3, —1, —1/3, 1, 2, and 3 are possible points of discontinuity. By examining valuls of
near these points, we find thais continuous on the interval{s-4, —3), (-3, —-1), (-1, —1/3), (—1/3, 1),
(1,2),(2,3),and(3, 4).

. Yes, there is an input tb that produces every output value betwdar-4) = —2 andf (4) = 1.

.Yes,—2=f(-4 < f(x) < f(0)=2if -4 < x < 4. Thatis,f assumes both a maximum value and a

minimum value over the interv@l-4, 4].

Sincef is continuous on the interv@ld.1, 1], the EVT says that assumes both a minimum value and a
maximum value over this interval.

The interval0, 1] is not a closed interval. Thus, since the hypotheses of the EVT are not satfsfiedd
not assume a maximumm and minimum value on this interval.

The functionf is not continuous on the intervgl-1, 1], so the hypotheses of the theorem are not satisfied.

Sincef is a polynomial, it is continuous everywhere. Moreovie(Q) = 2 and f (1) = —1. Therefore,
since—1 < 0 < 2, the IVT implies thatf has a root somewhere in the interv@) 1).

Note that # < 3 < 22, s0+/3 lies in the interva[1, 2]; the midpoint of this interval isn; = 3/2. Since
(mp)? = 9/4 < 3,+/3lies in the interva[3/2, 2]; the midpoint of this interval isn, = 7/4. Since
(mp)? = 49/16 > 3, /3 lies in the interva[3/2, 7/4]; the midpoint of this interval isnz = 13/8. Since
(m3)? = 169/64 < 3, /3 lies in the interva|13/8, 7/4]; the midpoint of this interval isns = 27/16.

(a) Each iteration of the bisection method reduces the width of the interval in which the root is guaranteed
to be located by a factor of 2. Thus, after 1 iteration, the interval has lerigih=1 1/2; after 2
iterations, the interval has lengthiZZ = 1/4; and so forth. The smallest integefor which
1/2" < 10~2isn = 7. Therefore, 7 iterations of the bisection method are necessary to guarantee an
estimate of the root within 1¢.

(b) The smallest integar for which 1/2" < 10-3isn = 10. Therefore, 10 iterations of the bisection
method are necessary to guarantee an estimate of the root within 10

(c) The smallest integer for which 1/2" < 10°isn = 17. Therefore, 17 iterations of the bisection
method are necessary to guarantee an estimate of the root within 10

(d) The smallest integar for which 1/2" < 1019 s n = 34. Therefore, 34 iterations of the bisection
method are necessary to guarantee an estimate of the root withtf 10

For each distance between 37 and 12 miles, there was some time at which | was that far from home.
(Distance is a continuous function of time.)

The IVT says nothing—the amount of money in my pocket is not a continuous function of time, since only
2-decimal place numbers are possible.

Letg(x) = f(x) — x. Then,g is a continuous functiorg(0) > 0, andg(1) < 0. The IVT implies thag
must have a root in the intervid, 1], so f (X) — x =0 = f(X) = x for somex in the interval[0, 1].

Copyright© Houghton Mifflin Company. All rights reserved 77



78

29.

31.
33.

35.

37.

39.

41.

CHAPTER 4: USING THE DERIVATIVE

Sincef (0) - f(1) < 0, the two factors must have opposite signs. Therefore, the IVT guarantees that
f (x) = 0 for somex in the interval(0, 1).

The statememtannot be true sincef (x) < 5 for all x.

The statememhust be true because, by hypothesis, there is a valuefof which
fX)=-7 = |f(X)|=7.

The statememhight be true. If f is continuous o1, 5], then the IVT guarantees that the statement is true.

However, if f isn’'t continuous, the statement might be true, but it need not be.

The statememhight be true.
Notice first that
f()-fB) <0 < (1 andf (5) have opposite signs

Thus the question is whether having a rootin5) means, necessarily, thatchanges sign from = 1 to
x = 5. Alittle thought shows thaf may or may not do so. E.gf,(x) = x — 3 doeschange sign from
x=1tox =5, but f(x) = (x — 3)2 doesn’t

Sincef is a polynomial, it is continuous everywhere. Also, sirfq®) = 2 andf (—1) = -5, the IVT
guarantees that a root dflies in the interval—1, 0).

Consider the functiog(x) = f (x) — x. Finding afixed pointof f is the same thing as findingreot of g,
sinceg(x) = 0 < f(x) = x. So let's show thag) has a root.
By hypothesisg(0) = f(0) > 0, andg(1) = f(1) —1<1—-1<0. Thusg(0) > 0 > g(1).

If eitherg(0) = 0 org(1) = 0 we'vefoundour root, and we're done. The only alternative is that
g(0) > 0> g(1). In this case, the IVT guarantees tigghas a root somewhere (0, 1), so we're done.
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84.9 Why Differentiability Matters; The Mean Value Theorem

1. The converse of the given statement is “If it's cloudy, then it's raining.” The given statement is true, but its
converse is false.

3. The converse of the given statement isX'I$ 1, thenx > 2.” The given statement is true, but its converse
is false.

5. The converse of the given statement isf{fx) = x2, then f’(x) = 2x.” The given statement is false, but
its converse is true.

7. If m= (a+ b)/2, then(q(b) — q(@))/(b — a) = q(m).

9. No such function exists. Suppose tRatxz, andxs are roots off . Rolle’s theorem implies that must
have a stationary point betwegnandx, and also betweexy, andxz since f (x1) = f(x2) = f(x3) = 0.
Thus, f must have at least 2 stationary points.

11. The sine function is an example of a function with infinitely many roots and infinitely many stationary
points.

13. Suppose that’(x) > 2 for all x. Then the speed limit law implies thdi(1) — f (0) > 2. This contradicts
the fact thatf (1) — f(0) = 1. Therefore, it is impossible to find a differentiable functibmvith the desired
properties.

15. No, f is not differentiable ak = 0.
17. Yes,f is continuous on the closed interal 2] and differentiable on the open inten@l 2).

19. Take a look at the graph df (x) on the interva[—1, 1]. You will see that it has a value 6f 8 atx = —1,
and a value of 0 at = 1. Sincef’(x) is a polynomial and therefore continuous, by the IVT there must
exist ac on[—1, 1] where f’(c) = 2. Sincef’(x) must equal 2 at somg then f (x) must have slope 2 at
that samee.

21. The MVT says thaf’(c) = (f(2) — f(1))/(2— 1) = 3 for somec in the interval(1, 2). Since
f’(x) = 2x, the only suitable value afis ¢ = 1.5.

23. Sinceg is not differentiable at 0, Rolle’s theorem doesn'’t apply.

25. If f’is a continous functionf is differentiable on(1, 4). Sincef (1) = f (4) = 0, Rolle’s theorem implies
that there must be @abetween 1 and 4 for whicli’(c) = 0.

27. If £/ is not continuousf’ can “jump” from a positive to a negative valuevice versa

29. (a) Suppose thdt(2) = 3. Then, according to the MVT, there would be a numbsuch that 0< ¢ < 2
andf’(c) = (f(2) — f(0))/(2— 0) = 3/2. However, this contradicts the hypothesis thax) < 1.
Thus, f (2) = 3is not possible.

(b) 3/2< f(3) <3
() -1=<f(-H=-1/2

31. (@) f’'(1) =3,andf’(3) = —1.
(b) f(1) = 2. The equation of the line tangent to the grapif aitx = 3isy = 5— x. Thus, f (3) = 2.

(c) Since the function is differentiable everywhefé(l) > 0, andf’(3) < 0, there must, by Rolle’s
Theorem, be some point whefé(x) = 0.

(d) To get more than one maxima on that interval, the second derivative would have to have a sign change.
Since it doesn't, that mearfs (x) must decrease all the time, and that means it can only crogs the
axis once, which in turn means th&gx) can have only one critical point, which must be a maximum,
due to the negative second derivative.
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33.

CHAPTER 4: USING THE DERIVATIVE

(a) Yes. The trucker traveled 100 miles in 1.25 hours. The MVT asserts that the trucker’s speed must have
been 80 mph at some time during the trip.

(b) The trucker's fine will be at least $125 $50+ $5- 15.
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