
SECTION 4.1 SLOPE FIELDS; MORE DIFFERENTIAL EQUATION MODELS

§4.1 Slope Fields; More Differential Equation Models

1. (a) The solution curves are “parallel” to each other in the sense that they differ from each other only in
theirhorizontalposition. Thus, e.g., all the curves have the same slope wherey = 2.

(b) It doesappear that each of the five “upper” curves has the same slope wheny = 3. Carefully draw a
tangent line to any one of the curves at the appropriate point; measure its slope. The result should be 3
(or very close to 3).

The answercouldhave been predicted in advance. The fact that each curve is a solution to the DE
y′ = y means precisely that wheny = 3, y′ = 3, too.

(c) At the levely = −4, each curve has slope−4. Again, this is exactly what the DE predicts.

(d) All curves appear to be very nearlyhorizontalneary = 0. The only solution curve that actually
touches the liney = 0 is the solution curvey = 0 itself. Appropriately, this curve has slope 0
everywhere.

3. Since f (1) = 2, the point(1, 2) = (
t, y(t)

)
is on the solution curve. From the DE, we find that

y′(1) = 12 · y(1) + 1 = 3 so the tangent line has slope 3. Since the tangent line passes through the point
(1, 2), it is described by the equationy = 3t − 1.

5. The slope of the tangent line at(−2, 1) is y′(−2) = (−2)2 · y(−2) = 4. Thus,y = 4(t + 2) + 1 = 4t + 9 is
an equation of the tangent line.

7. This is the slope field of DE (vii),y′ = cosy. Observe that the slope is the same at eachx-value — the
slope at each grid point depends only on the value ofy.

9. This is the slope field of DE (iii),y′ = ty.

11. This is the slope field of DE (viii),y′ = sint .

13. This is the slope field of DE (x),y′ = y(1 − y).

15. All ticks at the same vertical position are parallel.

17. (b) If y(t) = √
t2 + C, theny′(t) = t/

√
t2 + C = t/y. Similarly, if y(t) = −√

t2 + C, then
y′(t) = −t/

√
t2 + C = t/y.

(c) y(t) = √
t2 + 1

(d) y(t) = ±√
t2 − 1

19. (b) If y(t) = e−t + Ce−2t , theny′(t) = −e−t − 2Ce−2t = e−t − 2
(
e−t + Ce−2t

) = e−t − 2y.

(c) y(t) = e−t − e−2(t+1)

(d) y(t) = e−t − e2−2t − e1−2t

(e) y(t) = e−t + e2−2t − e1−2t

21. (a) y(t) = t − 1 + 2e−t

(b) y(t) = t − 1 + 4e−t

(c) y(t) = t − 1

(d) If y(t) = t − 1 + Ce−t , theny′(t) = 1 − Ce−t = t − (t − 1 + Ce−t ) = t − y(t).

(e) y′ = t − y �⇒ y′′(t) = 1 − y′(t) = 1 − (
t − y(t)

) = 1 − t + y(t). This implies that the solution
curve in part (a) is concave up, sincey′′(t) > 0; the solution curve in part (b) is concave down since
y′′(t) < 0, and the solution curve in part (c) is linear sincey′′(t) = 0.
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23. (a) Since the outside temperature is−10◦ C and the coffee is initially 90◦ C, the temperaturey(t) of the
coffee at timet is y(t) = −10+ 100ekt. For the foam cup,k = −0.05, so the temperature reaches
70◦ C at timet = − ln(80/100)/0.05 ≈ 4.46 minutes after leaving the store. For the cardboard cup,
k = −0.08, so the temperature reaches 70◦ C aftert = − ln(80/100)/0.08 ≈ 2.79 minutes.

After t = 5 minutes, the coffee in the foam cup is−10+ 100e−0.25 ≈ 68◦ C while the coffee in the
paper cup is−10+ 100e−0.4 ≈ 57◦ C.

(b) In the store, the temperature of the coffee at timet is y(t) = 25+ 65ekt. Therefore, the coffee reaches
70◦ C aftert = ln(45/65)/k minutes. This implies that Boris’s coffee reaches 70◦ C in approximately
7.4 minutes and Natasha’s coffee reaches this temperature in approximately 4.6 minutes.

After t = 5 minutes, Boris’s coffee is approximately 76◦ C and Natasha’s coffee is approximately
69◦ C.

(c) If the coffee is to be at least 70◦ C after 5 minutes outdoors,k must be chosen so that
70 ≤ −10+ 100e5k. This implies thatk ≥ ln(80/100)/5 ≈ −0.0446.

25. (a) P(t) is an increasing function, soP′(t) must never be negative. The factorM − P(t) causes the rate
of learning to decrease as the value of the performance function approaches the maximum. Thus, the
rate of learning is large whenM − P(t) is large and approaches zero asP(t) approachesM. The
value ofP never exceedsM becauseP′ = 0 whenP = M.

(b) If P(t) = M − Ae−kt, thenP′(t) = Ake−kt = k Ae−kt = k(M − P), as desired.

(c) From the previous part, solutions are of the formP(t) = M − Ae−0.05t . SinceP(0) = 0.1M, it
follows thatA = 0.9M. Therefore,P(t) = M − 0.9Me−0.05t .

We wantt such thatP(t) = 0.9M, so we solve the equationM − 0.9Me−0.05t = 0.9M for t . The
solution ist = 20 ln 9≈ 44 hours.

27. (a) The DEv′ = g − kv can be rewritten in the formv′ = (−k)
(
v − (−g/k)

)
which has the same form as

the DE describing Newton’s law of cooling. Thus, the solution of the DE is

v(t) = g

k
−
(g

k
− v0

)
e−kt

(b) Sincey′(t) = v(t), y(t) = g

k
t +

( g

k2
− v0

k

)
e−kt +

(
y0 − g

k2
+ v0

k

)
.

29. Observe that the graph ofy = f (x) is decreasing when 1< x < 2 and increasing when 2< x < 5. Thus,
y′ must be negative on(1, 2) and positive on(2, 5). Also, observe thaty > x on (1, 2) andy < x on (2, 5).
Furthermore,y < x2 on (2, 5).

The differential equation (a) cannot be the correct answer since the expression(y − x)/x is negative on the
interval(2, 5). Similarly, the differential equation (c) cannot be the correct answer because the expression
(x2 − y)/x is not negative over the entire interval(1, 2). On the other hand, the expression(x − y)/y is
negative on the interval(1, 2) and positive on the interval(2, 5). Therefore, the correct differential equation
is (b).

31. For each value ofy, the slopes do not depend onx (i.e., all ticks at the same vertical position are parallel).

33. (b) Since the DE does not depend explicitly ont , the solutions for different initial conditions can be
obtained by horizontal shifts. Thus, sincey(t) = (t + 1)et is the solution of the DE with the initial
conditiony(0) = 1, y(t) = (t + 2)et+1 is the solution of the DE with the initial conditiony(0) = 2e.
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SECTION 4.2 MORE ON LIMITS: LIMITS INVOLVING INFINITY AND L’HÔPITAL’S RULE

§4.2 More on Limits: Limits Involving Infinity and l’H ôpital’s Rule

1. Note thatp(x) = (x + 1)(2 − x) = 2 + x − x2 = x2(2/x2 + 1/x − 1).

(a) Since lim
x→∞(2/x2 + 1/x − 1) = −1 and lim

x→∞ x2 = ∞, lim
x→∞ p(x) = −∞.

(b) Since lim
x→−∞(2/x2 + 1/x − 1) = −1 and lim

x→−∞ x2 = ∞, lim
x→−∞ p(x) = −∞.

3. lim
x→2

f (x)

g(x)
does not exist because lim

x→2−
f (x)

g(x)
= ∞ but lim

x→2+
f (x)

g(x)
= −∞.

5. Nearx = −2, f (x) = −x − 2 = −(x + 2). Therefore, lim
x→−2

x + 2

f (x)
= lim

x→−2

x + 2

−(x + 2)
= −1.

[NOTE: l’H ôpital’s rule could also be used to obtain this result.]

7. lim
x→1

f (x) + 2

g(x) + 1
does not exist because lim

x→1−
f (x) + 2

g(x) + 1
= lim

x→1−
−2x + 2

−x + 1
= 2 but

lim
x→1+

f (x) + 2

g(x) + 1
= lim

x→1+
x − 3

x − 2
= 1.

9. lim
x→∞

3

x2
= 0

11. lim
t→∞

2t + 3

5 − 4t
= −1

2
.

13. lim
x→∞

x2 + 1

x
= ∞

15. lim
x→∞

sinx

x
= 0

17. lim
x→∞

2x

x2
= ∞

19. lim
x→∞

ln x

x2/3
= lim

x→∞
x−1

2x−1/3/3
= lim

x→∞
3

2x2/3
= 0.

21. lim
x→0

sin
(
sinx

) = 0

23. lim
x→0

tanx

x
= lim

x→0
sec2 x = 1 so lim

x→0
cos

(
tanx

x

)
= cos 1

25. lim
x→1

x3 + x − 2

x2 − 3x + 2
= lim

x→1

3x2 + 1

2x − 3
= −4

27. lim
x→0

1 − cosx

sin(2x)
= lim

x→0

sinx

2 cos(2x)
= 0

29. lim
x→∞

ex

x2 + x
= lim

x→∞
ex

2x + 1
= lim

x→∞
ex

2
= ∞

31. Since lim
x→1

f (x) = lim
x→1

x2 − 1 = 0, l’Hôpital’s rule can be used to evaluate the desired limit. Thus,

lim
x→1

f (x)

x2 − 1
= lim

x→1

f ′(x)

2x
= f ′(1)

2
. It appears from the graph thatf ′(1) ≈ 3/2, so lim

x→1

f (x)

x2 − 1
≈ 3

4
.

33. lim
x→4

f (x)

(x − 4)2
= ∞ since lim

x→4
f (x) ≈ 3.6 and since lim

x→4
(x − 4)−2 = ∞.
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35. Since lim
x→1

f (x − 3) = 0 and lim
x→1

f (x + 3) = 3.6, lim
x→1

f (x − 3)

f (x + 3)
= 0.

37. No. Since lim
x→π/2− tanx = ∞ and lim

x→π/2+ tanx = −∞, lim
x→π/2

tanx does not exist. Therefore, l’Ĥopital’s

rule cannot be used. Moreover, the limits lim
x→π/2±

tanx

x − π/2
have the form∓∞/0 so l’Hôpital’s rule cannot

be used to evaluate these limits either.
[NOTE: L’H ôpital’s rule can be used only for limits of the form 0/0 or∞/∞.]

39. No. The limit lim
x→π/2−

tanx

x − π/2
has the form∞/0 so l’Hôpital’s rule cannot be used to evaluate this limit.

[NOTE: L’H ôpital’s rule can be used only for limits of the form 0/0 or∞/∞.]

41. Sincef is a non-constant periodic function, the values off (x) do not approach a single numberL as
x → ∞.

43. There are many ways to draw such a graph. Any suitable graph, though, should have a horizontal asymptote
at y = −3 (to the right) and another horizontal asymptote aty = 3 (to the left). A simple way to satisfy
condition (iii) is to have the graph pass through(2, −2).

45. (a) Yes. The liney = −1 is a horizontal asymptote ofh since lim
x→∞ h(x) = −1.

(b) No. If h were a rational function with a vertical asymptote atx = 3 and the property lim
x→∞ h(x) = −1,

thenh would have to be of the form

h(x) = −xn + · · ·
(x − 3)(xn−1 + · · · )

for some positive integern. But then lim
x→−∞ h(x) = −1 not∞.

47. p andq can be any polynomials such that the coefficient of the highest power ofx in each polynomial is
positive, and the degree ofp is greater than the degree ofq. For example, the polynomials
p(x) = x2 − 2x + 3 andq(x) = x + 1 have the desired properities:
lim

x→∞ p(x) = lim
x→∞ q(x) = lim

x→∞ p(x)/q(x).

49. p andq can be any polynomials such that the degree ofp is less than the degree ofq. For example, the
polynomialsp(x) = x + 1 andq(x) = x2 + 2 have the desired properities: lim

x→∞ p(x) = lim
x→∞ q(x) = ∞,

but lim
x→∞ p(x)/q(x) = 0.

51. (a) Ifa = −21, then lim
x→3

f (x) = 13

4
.

(b) lim
x→∞ f (x) = 2 for every value ofa.

53. g is not continuous atx = 0 because lim
x→0− f (x) �= lim

x→0+ f (x).

55. lim
x→∞ e−x ln x = lim

x→∞

(
ln x

ex

)
= lim

x→∞

(
1
x

ex

)
= lim

x→∞

(
1

xex

)
= 0 [Denominator blows up!]

57. lim
x→8

(
x − 8

3
√

x − 2

)
= lim

x→8

(
1

1
3x−2/3

)
= 1

1
3 · 8−2/3

= 3 · 82/3 = 3 · 4 = 12

59. lim
x→0

(
sinx

x − sinx

)
= lim

x→0

(
cosx

1 − cosx

)
= ∞ [NOTE: numerator−→ 1 and denominator−→ 0 from

above.]
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61. lim
x→0

ex − 1

x
= lim

x→0

ex

1
= 1

63. lim
x→0

ex − e−x

x
= lim

x→0

(
ex + e−x) = 2

65. lim
x→0

1 − cos2 x

x2
= lim

x→0

2 cosx sinx

2x
= lim

x→0

2 cos2 x − 2 sin2 x

2
= 1

67. lim
x→1

ln x

x2 − x
= lim

x→1

1

2x2 − x
= 1

69. lim
x→1

sin(πx)

x2 − 1
= lim

x→1

π cos(πx)

2x
= −π

2

71. lim
x→1

cos3(πx/2)

sin(πx)
= lim

x→1

−3 cos2(πx/2) sin(πx/2)

2 cos(πx)
= 0

73. lim
x→0+ x2 ln x = lim

x→0+
ln x

x−2
= lim

x→0+ −x2

2
= 0

75. lim
x→0

x2 ln(cosx) = 0 since lim
x→0

x2 = 0 and lim
x→0

ln(cosx) = 0.

77. lim
w→0+ w(ln w)2 = lim

w→0+
(ln w)2

1/w
= lim

w→0+ −2 lnw

1/w
= lim

w→0+ 2w = 0.

79. lim
x→∞ x

(π

2
− arctanx

)
= lim

x→∞
π/2 − arctanx

x−1
= lim

x→∞
x2

1 + x2
= 1

81. lim
x→0

(
1

sinx
− 1

x

)
= lim

x→0

x − sinx

x sinx
= lim

x→0

1 − cosx

sinx + x cosx
= lim

x→0

sinx

2 cosx − x sinx
= 0

83. Using l’Hôpital’s rule, lim
x→1

(
f (x)

)2 − 4

x2 − 1
= lim

x→1

f (x) f ′(x)

x
= 6.

85. lim
x→0

x f (x)

(ex − 1) g(x)
= lim

x→0

f (x) + x f ′(x)

exg(x) + (ex − 1) g′(x)
= f (0)

g(0)

87. lim
x→0+ 2x ln x = 0 so lim

x→0+ x2x = e0 = 1

89. lim
x→0

ln(1 + x)

x
= lim

x→0

1

1 + x
= 1 so lim

x→∞(1 + x)1/x = e1 = e.

91. lim
x→1

(
ln x

)sinx = 0 since lim
x→1

ln x = 0 and lim
x→1

sinx = sin 1≈ 0.84147.

93. lim
x→0

f (x)

x
= lim

x→0

f (x) − f (0)

x − 0
. The limit on the right is the definition off ′(0).

95. f ′(1) does not exist becausef is not continuous atx = 1. Here are the details:

f ′(1) = lim
h→0

f (1 + h) − f (1)

h
. However, the two-sided limit in the definition off ′(1) does not exist

because lim
h→0+

f (1 + h) − f (1)

h
= lim

h→0+
(1 + h)2 + 3 − 5

h
= lim

h→0+
h2 + 2h − 1

h
= −∞ and

lim
h→0−

f (1 + h) − f (1)

h
= lim

h→0−
2(1 + h) + 2 − 5

h
= lim

h→0−
2h − 1

h
= ∞.
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§4.3 Optimization

1. A function achieves its minimum value over a closed interval at an endpoint of the interval or at a stationary
point within the interval. Sincef ′(1) = 0, f (x) could attain its minimum value atx = −5, x = 1, orx = 5.

3. Yes — the functionh fails to be differentiable atx = 1 so it has a critical point there.

5. (a) We can writeg(x) = 5x2 − 8x + 4, sog′(x) = 10x − 8. The only stationary point occurs where
g′(x) = 10x − 8 = 0, i.e., atx = 4/5. Also,g(4/5) = 4/5, so 4/5 is also the minimum value ofg.

(b) The previous part showsg(x) is least ifx = 4/5. This means that the square of the distance (and
hence the distance itself) is least ifx = 4/5, just as we found in Example 3. This minimum distance,
moreover, is

√
4/5 = 2/

√
5 ≈ 0.8944.

7. (a) The sketch should suggest thatP has coordinates somewhere near(0.7, 0.5).

(b) The functionf (x) = x2 + (1 − x2)2 gives the square of the distance from the origin to the point
(x, 1 − x2) on the parabola. Minimizingf in the usual way shows that the minimum distance occurs
if x = √

2/2 andy = 1/2—i.e.,P is the point(
√

2/2, 1/2).

(c) The line from the origin toP(
√

2/2, 1/2) has slope 1/
√

2. At x = √
2/2, the parabolay = 1− x2 has

slope−√
2. This means that the two lines are perpendicular, as claimed.

9. The equationsP = xy andx + y = 10 imply thatP(x) = x(10− x) = 10x − x2; the exercise is
meaningful for 0≤ x ≤ 10. Now P′(x) = 10− 2x = 0 if x = 5, andP(5) = 25.

11. The constraintx + y = 4 implies thaty = 4 − x. Thus, we wish to find the minimum value of
f (x) = x3 + (4 − x) if x ≥ 0. Since f ′(x) = 3x2 − 1, the only critical point off in the interval[0, ∞) is
at x∗ = 1/

√
3 = √

3/3. Since f ′′(x∗) = 6x∗ = 2
√

3 > 0, this value ofx is a local minimum point off . It
follows that the minimum value off over the interval[0, ∞) is
f (x∗) = x3∗ + 4 − x∗ = (

√
3/3)3 + 4 − √

3/3 = 4 − 2
√

3/9 ≈ 3.6151.

13. If H(w) = 4w5 − 5w6, H ′(w) = 20w4 − 30w5 = 10w4(2 − 3w). Thus,H ′(w) > 0 on the interval
(−∞, 2/3) andH ′(w) < 0 on the interval(2/3, ∞). This implies thatH is increasing everywhere to the
left of w = 2/3 and decreasing everywhere to the right ofw = 2/3. Therefore,w = 2/3 is the global
maximum point ofH(w).

15. If the base of the rectangle is on thex-axis and has corners at(−a, 0) and(a, 0), the area of the inscribed
rectangle isA(a) = 2a · √

3(1 − a) = 2
√

3a(1 − a). Now, A′(a) = 2
√

3(1 − 2a) = 0 if a = 1/2. Since
A(0) = A(1) = 0 andA(1/2) = √

3/2, a = 1/2 corresponds to the rectange with largest area. This
rectangle has corners at the points(±1/2, 0), (±1/2,

√
3/2); it occupies 50% of the area of the triangle.

17. Suppose that the side of the triangle in the first quadrant is tangent to the parabola at the pointx = a > 0.
Then the tangent line is described by the equationy = −2a(x − a) + (1 − a2). Thex-intercept of this
tangent line is the point

(
(1 + a2)/2a, 0

)
; its y-intercept is the point(0, 1 + a2). By symmetry, the area of

the triangle corresponding to this tangent line isA(a) = 1

2
· 1 + a2

a
· (1 + a2) =

(
1 + a2

)2
2a

.

Since we wish to find the value ofa that minimizesA(a), we solve for the stationary points ofA′:
A′(a) = 0 �⇒ a = ±√

3/3. SinceA′(x) < 0 if 0 < x <
√

3/3 andA′(x) > 0 if
√

3/3 < x < 1,
a = √

3/3 corresponds to the triangle with smallest possible area. Its area isA(
√

3/3) = 8
√

3/9 square
units.

19. (a) The trajectory formula givesy = x − 9.8x2/900. The peak occurs where
dy/dx = 1 − 9.8x/450= 0, i.e., atx ≈ 45.92 meters. Ifx ≈ 45.92, theny ≈ 22.96 meters. The ball
lands wherey = 0, i.e., atx ≈ 91.84 meters.

(b) The trajectory is a parabola, intersecting thex-axis atx = 0 andx = 91.84; the peak occurs at
(45.92, 22.96).
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21. (a) Set the trajectory equation to zero and solve forx. There are two solutions—x = 0 andx = R, where
R is the range.

(b) Let R(m) = 2v0
2

g

m

1 + m2
; let’s maximize this form > 0. Well, R′(m) = 2v0

2

g

1 − m2

(1 + m2)2
; thus

R′(m) = 0 for m = 1. Thus the range is maximum if the initial slope is 1, or, equivalently, the initial
angle isπ/4.

23. (a) MaximizingA = xy subject to 2hx + 2vy = b leads tohx = vy = b/4, sox = b/(4h), y = b/(4v),
and the maximum possible areaxy = b2/(16hv) square feet.

(b) Minimizing C = 2hx + 2vy subject toxy = a leads tohx = vy. Combining this witha = xy gives
x = √

av/h andy = √
ah/v. Thus the minimum possible cost is 2hx + 2vy = 4

√
avh.

(c) The two parts are consistent—both say that the best scheme is to spend half the money on east-west
fence and half on north-south fence.

25. The volume of the can isV = πr 2h and the surface area isA = 2πrh + 2πr 2. Since the can must hold
168 cm3, 168= πr 2h or h = 168/πr 2. This allows us to expressA as a function ofr :

A(r ) = 2πr

(
168

πr 2

)
+ 2πr 2 = 336

r
+ 2πr 2.

Therefore,
d A

dr
= −336

r 2
+ 4πr = 0

if r = 3
√

84/π ≈ 2.99 cm. Since (d2A/dr2 > 0 if r has this value, it corresponds to a local minimum of the
function A(r ).) It follows thath = 2 3

√
84/π ≈ 5.98 cm.

27. Letx be the length of a side of the base andh be the height of the box. Then 100= 8x + 4h, so
h = 25− 2x.

(a) The volume of the box isx2h = x2(25− 2x) = V(x). SinceV ′(x) = 50x − 6x2 and
V ′′(x) = 50− 12x, the volume is maximized ifx = 25/3; V(25/3) = 15625/27 ≈ 578.7 cm3.

(b) The surface area of the box is 2x2 + 4xh = 2x2 + 4x(25− 2x) = 100x − 6x2 = A(x). Since
A′(x) = 100− 12x andA′′(x) = −12, the surface area is maximized ifx = 25/3;
A(25/3) = 1250/3 cm2.

29. (a) Both conditions are satisfied ifx ∈ [0, 6].
(b) The results in part (a) imply that the dam can be built at most 6 miles downstream. If the dam were

constructed at this point, it would beW(6) = 100 feet wide andD(6) = 130 feet high.

(c) W(x) achieves its maximum value on the interval[0, 6] at x = 0; W(0) = 220.

(d) W(x) achieves its minimum value on the interval[0, 6] at x = 4; W(4) = 60. [W′(x) = 20(x − 4) and
W′′(x) = 20.]

(e) The cost of building the damx miles downstream is
C(x) = kW(x)D(x) = 100k

(
2x3 − 15x2 + 36x + 22

)
, wherek is a positive constant. Now,

C′(x) = 600k
(
x2 − 5x + 6

)
sox = 2 andx = 3 are stationary points ofC. Finally, since

C(0) < C(3) < C(2) < C(6), the dam should be builtx = 0 miles downstream.

31. If x is the length of an edge of the square andr is the radius of the circle, thenL = 4x + 2πr . We wish to
maximizeS = x2 + πr 2. Sincer = (L − 4x)/2π , the equation forScan be written in the form
S(x) = x2 + (L − 4x)2/4π , where 0≤ x ≤ L/4. Now,S′(x) = 2x − 2(L − 4x)/π = 0 if x = L/(4+ π).
SinceS′′(x) = 2 + 8/π > 0, this value ofx corresponds to a local minimum ofS! Thus, the maximum
value ofSmust occur whenx = 0 or whenx = L/4. SinceS(0) = L2/4π andS(L/4) = L2/16, it
follows that the sum of the areas is maximized when all of the wire is used to form a circle.
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§4.4 Parametric Equations, Parametric Curves

1. The curve is the upper unit semi-circle plotted from(−1, 0) to (0, 1) to (1, 0).

3. The curve is the right unit semi-circle plotted from(0, −1) to (1, 0) to (0, 1).

5. The curve is the unit circle plotted clockwise from(0, −1) to (0, 1) to (0, −1).

7. In each case the idea is to calculate
√

f ′(t)2 + g′(t)2; if the result is constant, then the curve has constant
speed. Among the given choices only the last—x = sin(π t), y = cos(π t)—has constant speed.

9. (a) The spacing of bullets suggests thatP moves quickly att = 3, t = 4, t = 9, andt = 10, and slowly at
t = 0, t = 1, t = 6, andt = 7.

(b) The distance along the curve fromt = 2.5 to t = 3.5 seems to be about 3 units. ThusP appears to
travel about 3 units per second att = 3.

(c) Use the curve to estimate the speed ofP at t = 6. The distance along the curve fromt = 5.5 to
t = 6.5 seems to be about 1 unit. ThusP appears to travel about 1 unit per second att = 6.

11. (a) The result is the circle of radius 2, centered at(2, 1).

(b) Here’s the calculation: Sincex = a + r cost andy = b + r sint ,

(x − a)2 + (y − b)2 = r 2(cost)2 + r 2(sint)2 = r 2.

(c) Settingx = 2 + √
13 cost , y = 3 + √

13 sint , and 0≤ t ≤ 2π , gives the circle of radius
√

13,
centered at(2, 3).

(d) No proper “curve” results: for allt , (x, y) stays put at(2, 3).

13. (a) The origin corresponds tot = 0; P(0.1) ≈ (0.48, 0.56); P(π/2) = (1, 0). ThusP starts at the origin
and starts off in a northeasterly direction.

(b) Bothx andy are 0 if and only if both 5t and 6t are integer multiples ofπ . This occurs only fort = 0,
t = π , andt = 2π .

(c) Using thet-interval 0≤ t ≤ 4π would produce exactly the same curve, but it would be traversed
twice.

15. (a) The curve starts at(at0 + b, ct0 + d) and ends at(at1 + b, ct1 + d).

(b) y = c

a
(x − b) + d

(c) x = a

c
(y − d) + b

(d) If a = c = 0, the parametric curve is just the point(b, d).

17. (a) The model would be more realistic if it took wind resistance into account. To do so, one would need
some mathematical information about wind resistance.

(b) Imitate the argument given forf (t). Notice, too, that ifg(t) = 7 − 16t2, theng′′ = −32,g(0) = 7,
andg′(0) = 0, just as claimed.

(c) By definition,s(t) =
√

f ′(t)2 + g′(t)2 =
√

1502 + (−32t)2 =
√

22500+ 1024t2. Plotting this
function over the interval 0≤ t ≤ 0.661 (when the ball hits the ground) gives almost a horizontal
line—the velocity changes very little over the short time interval.

19. (a) Ifx = f (t) = s0t andy = g(t) = 7 − 16t2 it’s easy to check directly thatf ′′(t) = 0, f ′(0) = s0,
f (0) = 0, g′′(t) = −32,g′(0) = 0, andg(0) = 7. These are the necessary conditions.

(b) The ball reaches home plate whenf (t) = s0t = 60.5, i.e., att = 60.5/s0 seconds.
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(c) The trajectory is parabolic for anys0 > 0. (If s0 = 0, the ball drops straight down.) This can be seen
by eliminatingt . Sincex = s0t , t = x/s0, soy = 7 − 16t2 = 7 − 16x2/s2

0. This is the equation of a
parabola in thexy-plane.

21. Now,x = 200 ln(3t/4 + 1).

(a) x(t) = 60.5 at timet = 4
(
e121/400 − 1

)
/3 ≈ 0.47098. Thus, the air-dragged ball takes about 0.0677

seconds longer to reach the plate.

(b) y(t) ≈ 3.4508 feet at the time whenx(t) = 60.5

(c) Whenx = 60.5, the ball’s speed is approximately 111.87 ft/sec.

(d) Wheny = 0, x ≈ 80.569 feet.
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§4.5 Related Rates

1. (a) x + 2y = 3 �⇒ x′(t) + 2y′(t) = 0 �⇒ x′(t) = −2y′(t).
(b) Using part (a), 1= −2y′ so y′ = −1/2.

(c) The linex + 2y = 3 has slope−1/2. Thus, a change of�x in x leads to a change�y = −�x/2. In
other words, the rate of change ofy is −1/2 the rate of change ofx for all x.

3. (a) Using implicit differentiation,
x2(t) + y2(t) = 1 �⇒ 2x(t) x′(t) + 2y(t) y′(t) = 0 �⇒ x(t) x′(t) + y(t) y′(t) = 0 for all t .

(b) If x(0) = 1 andy′(0) = 1, theny(0) = 0 andx′(0) = 0. This means that the moving point is at(1, 0)

at this time. Sincex′(0) = 0 andy′(0) = 1, the point is moving vertically upwards.

(c) If x(t0) = 1/2, the equationx2 + y2 = 1 implies thaty(t0) = ±√
3/2. If x(t0) = 1/2 andx′(t0) = 1,

the equation in part (a) implies that 1/2 ±
√

3

2
y′(t0) = 0. Thus, ify(t0) = √

3/2, y′(t0) = −√
3/3; if

y(t0) = −√
3/2, y′(t0) = √

3/3.

(d) At the timet0, the moving point is at(1/2,
√

3/2) or at(1/2, −√
3/2). If it is at the first point, then it

is moving to the right and downward. If it is at the second point, then it is moving to the right and
upward.

5. Using similar triangles,

12

x + s
= 6

s
�⇒ 12s = 6x + 6s �⇒ 6s = 6x �⇒ s = x

for every timet . Thus, if Hal is 30 feet from the lamppost (i.e.,x = 30), the length of his shadow is
s = 30 feet. Furthermore, sinces′(t) = x′(t) andx′(t) = 7 feet per second, his shadow is lengthening at
the rate of 7 feet per second.

7. If L(t) andW(t) are the length and width of the rectangle at timet , then the area of the rectangle at timet
is A(t) = L(t) · W(t) andA′(t) = L ′(t)W(t) + L(t)W′(t) is the rate of change of the rectangle’s area.
Plugging in the values given in the problem, we find that the area of the rectangle is increasing at a rate of
22 cm2/sec.

9. Let E(t) be the distance from the intersection of the bicyclist traveling west andS(t) be the distance from
the intersection of the bicyclist traveling south. From the information given in the problem, we have
E = 4 miles,E′ = −9 miles/hour,S = 3 miles, andS′ = 10 miles per hour. The distance between the two
bicyclistsD(t) at any time can be determined from the equationD2 = E2 + S2. Differentiating both sides
of this equation with respect to time (using the product rule), we find that

2D · D′ = 2E · E′ + 2S · S′

Now, at the time of interestD = 5 miles, so we may use the previously given values ofE, E′, S, andS′, so
5 · D′ = 4 · (−9) + 3 · 10. This implies thatD′ = −6

5 miles per hour. Therefore, the distance between the
bicyclists isdecreasingat a rate of 1.2 miles per hour.

11. Letx(t) be the distance from the runner to first base at timet . Then the distance from the runner to second
base isD(t) = √

902 + x(t)2 andD′(t) = x(t)x′(t)/D(t). When the runner is halfway to first base
x(t) = 45 andx′(t) = −20 ft/sec, soD′(t) = −20/

√
5 = −4

√
5 ft/sec.

13. The area of the ring between the two circles is increasing.

Let r (t) be the radius of the inner circle at timet andR(t) be the radius of the outer circle at timet . Then,

the area of the ring between the two circles isA(t) = π
((

R(t)
)2 − (

r (t)
)2). Therefore,

A′(t) = 2π
(
R(t)R′(t) − r (t)r ′(t)

)
. At the time whenR = 10, R′ = 2, r = 3, andr ′ = 5, A′ = 10π . Since

this value (the rate of change of the area of the ring between the two circles) is positive, the area is
increasing.
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15. Since both flights are at the same elevation, we may describe the positions of the planes in terms of just
their x- andy-coordinates. The coordinates of the Pachyderm planet hours after observation are
(0, −36+ 410t) and the coordinates of the Peterpan plane are(41− 455t, 0). Thus, the distance between
the two planes at timet is D(t) = √

(−36+ 410t)2 + (41− 455t)2.

(a) At the time of closest approach the planes are
√

7396/15005≈ 0.702 nautical miles apart.

(b) At time t = 6683/75025≈ 0.0891 hours,D′(t) = 0 andD′′(t) > 0. Thus, the controllers have
approximately 5.345 minutes before the time of closest approach.

17. Since the slick has the form of a circular cylinder, the volume of oil in the slick isV = Ah whereA is the
area of the slick andh is its depth. At the moment of time described in the problem, the slick has area
A = πr 2 = π5002 square feet,h = 0.01 feet, andh′ = −0.001 feet/hour. Since
V ′ = A′h + Ah′ = −5 cubic feet per hour, the surface area is increasing at a rate of
A′ = (−5 + 250π)/0.01 ≈ 78,040 square feet per hour.

19. (a) The volume of the ice isV = 4π
(
3R2T + 3RT2 + T3

)
/3 whereR = 4 inches is the radius of the

iron ball andT = 2 inches is the thickness of the ice. Now, the rate of change of the volume of the ice
can be related to the rate of change in the thickness of the ice by differentiating:
V ′ = 4π

(
2RR′T + R2T ′ + 2RT T′ + R′T2 + T2T ′). SinceR′ = 0 andV ′ = −10 in3/min, we may

solve forT ′ = −10/144π in/min.

(b) The surface area of the ice isS = 4π (R + T)2. Thus, the rate of change of the surface area is
S′ = 8π (R + T)

(
R′ + T ′) = 8π · 6 · T ′ = −10/3 in2/min.

21. (a) Home plate, the position of the ball, and first base can be considered to be the vertices of a right
triangle. LetSbe the length of the hypotenuse of this right triangle andF andT be the lengths of the
other two sides. At the instant of time when the ball is halfway to third baseF = 90 feet and
T = 45 feet. SinceS2 = F2 + T2, S = √

10125 feet. Differentiating both sides of the equation
relatingS to F andT , we obtain 2SS′ = 2F F ′ + 2T T′, or SS′ = F F ′ + T T′. Now, T ′ = 100 ft/sec
andF ′ = 0, soS′ = (45 · 100) /

√
10125≈ 44.721 ft/sec.

(b) This is similar to part (a) except thatF is now the distance between home plate and the runner. The
ball reaches the point halfway to third base in 0.45 seconds, soF = 25 ft/sec· 0.45 sec= 11.25 feet.
Thus,
S′ = (11.25 · 25+ 45 · 100) /

√
11.252 + 452 ≈ 103.08 ft/sec.

23. The volume of a cone with radiusr and heighth is V = πr 2h/3. If R is the ratioh/r , thenV = πh3/3R2.
Therefore,V ′(t) = πh(t)2h′(t)/R2. SinceV ′(t) = −10 cm3/min whenh′(t) = −2 cm/min and
h(t) = 8 cm, we find thatR2 = 82π/5 soR = 8

√
π/5.

25. If t is measured in hours andt = 0 corresponds to 12:00, the coordinates of the tip of the minute hand are
(xm(t), ym(t)) wherexm(t) = 7 cos(2π t − π/2) = 7 sin(2π t) andym(t) = 7 cos(2π t). Similarly, the
coordinates of the tip of the hour hand are(xh(t), yh(t)) wherexh(t) = 5 cos(π t/6) and
yh(t) = 5 sin(π t/6). Thus, the distance between the tips of the hands at timet is

D(t) =
√(

xm(t) − xh(t)
)2 +

(
ym(t) − yh(t)

)2

=
√

74− 70
(
sin(2π t) cos(π t/6) + cos(2π t) sin(π t/6)

)
= √

74− 70 sin(13π t/6)

so the distance between the hands at timet is changing at the rate

D′(t) = 770π

12 · D(t)
sin

(
13π

6
t

)
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Thus, at timet = 9 the distance between the hands is increasing at the rate of
D′(9) = 770π/12

√
74 ≈ 23.434 feet/hour or approximately 4.6868 inches/minute or 0.3906 feet/minute.

27. The elevation of the rocket at timet is y = 100 tanθ whereθ is the angle of elevation at timet . Therefore,
since bothy andθ are functions of time, the speed of the rocket at timet is y′(t) = 100· θ ′(t) · sec2 θ(t)
whereθ ′ is rate of change in the angle of elevation at timet . From the problem statement, we are interested
in the value ofy′ at the time whenθ = π/3 radians andθ ′ = π/15 radians/sec. Thus, at this time,
y′ = 100· 4 · π/15 = 80π/3 ≈ 83.776 m/sec.

29. When the water in the tank ish feet deep, the volume of water in the tank is
V = 1

2

(
3 + (3 + h)

)
h · 10 = 30h + 5h2 cubic feet. (The volume is the cross-sectional area times the length

of the tank. When the water has heighth, the upper base of the trapezoidal cross-section has length 3+ h.)
Thus,V ′ = 10(3 + h)h′ cubic feet/minute. Whenh = 1 foot andh′ = 1/48 feet/minute,V ′ = 5/6 cubic
feet/minute.
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§4.6 Newton’s Method: Finding Roots

1. The first three answers, written as fractions, arex1 = 9/4, x2 = 161/72, andx3 = 51841/23184. (The last
answer, by the way, is correct to 9 decimal places!)

3. Newton’s method will converge to the leftmost root (i.e., the root near−1.88) because thex-intercept of the
line tangent to the graph atx = 0.95 is to the left of the local maximum point atx = −1. (In fact, the
x-intercept of this tangent line is approximately−2.44.) It follows that subsequent iterations of Newton’s
method will converge to the root near−1.88 (all tangent lines based at points to the left ofx = −1 have
x-intercepts to the left ofx = −1).

5. (a) Newton’s method withx0 = 0.5 givesx1 = 0.724638,x2 = 0.7063515, andx3 = 0.706115. Thus, to
three-decimal-place accuracy, the solution isx = 0.706.

(b) The functionf has no other roots, becausef ′(x) = 5x4 + 4 > 0 for all x. (This means thatf is
increasing everywhere.)

7. (a) N(x) = x − x2 − a

2x
= x

2
+ a

2x
.

(b) If x >
√

a, thena/x < a/
√

a = √
a. If x <

√
a, thena/x > a/

√
a = √

a.

(c) The result follows from simple algebra.

(d) The estimates are 1, 3/2, 17/12, 577/408, 665857/470832.

9. (a) The first few Newton estimates are 1.250000000, 1.0250000001.000304878, 1.000000046. They are
accurate to 0, 1, 3, and 7 decimal places respectively.

(b) Newton’s method findsx = 1 if x0 > 0; it findsx = −1 if x0 < 0. It fails if x0 = 0.

11. xn+1 is thex-intercept of the line tangent to the graph off that passes through
(
xn, f (xn)

)
; this line has

slope f ′(xn). Therefore, equation?? implies thatxn+1 = xn − f (xn)/ f ′(xn).

13. (a) Suppose that 0< x <
√

a. Then
√

ax <
√

a
√

a = a �⇒ √
a < a/x. Alternatively, suppose that

x >
√

a > 0. Thenx >
√

a �⇒ √
ax > a �⇒ √

a > a/x.

(b) N(x) = x − x2 − a

2x
= x − x/2 + a/2x = (x + a/x)/2.

(c) If x = √
a, thenN(x) = x. In other words, Newton’s method “stops”—as it should—when it finds

theexactroot
√

a.

15. (a) The approximate roots are−0.244817, 3.80675, and 6.43807.

(b) Newton’s method jumps back and forth between the estimatesx = 2 andx = 5. Since
f (2)/ f ′(2) = −3, and f (5)/ f ′(5) = 3, applying Newton’s method to 2 gives 5; applying it to 5 gives
2. (Draw the graph to see the situation more clearly.)

(c) f ′(1.39) is a small number becausex = 1.39 is near a critical point off (i.e., the tangent line is
nearly horizontal). This means that thex-intercept of the tangent line may be far from the current
estimate of the root. This causes Newton’s method to converge slowly.

17. To find the minimum value ofg(x), considerg′(x) = −20x−3 + 6x + 1. Forx > 0,
g′′(x) = 60x−4 + 6 > 0, sog is concave up forx in [1, 10]. Thusg has at most one local minimum on
[1, 10]; it must occur at the one place where whereg′(x) = 0. (Sinceg′′(x) > 0, g′(x) is always increasing,
sog′(x) can equal 0 for at most one value ofx > 0.)

Applying Newton’s method tog′(x), starting fromx0 = 2, locates the rootx ≈ 1.3114. Thus
g(1.3114) ≈ 8.285 is the minimum value ofg.

Copyright c© Houghton Mifflin Company. All rights reserved 73



CHAPTER 4: USING THE DERIVATIVE

19. From a graph, it appears thatf achieves its maximum value betweenx = 2.5 andx = 3. To find the
maximum value off , therefore, we need to identify the corresponding root off ′. To do this, we use the

Newton iteration formulaxn+1 = xn − f ′(xn)

f ′′(xn)
, where f ′(x) = 2x sin(x2) + 2x3 cos(x2) and

f ′′(x) = 2 sin(x2) + 4x2 cos(x2) + 6x2 cos(x2) − 4x4 sin(x4). Usingx0 = 3, we obtainx1 = 2.78236,
x2 = 2.82791,x3 = 2.82467,x4 = 2.82465, andx5 = 2.82465. Thus, the maximum value off is
f (2.82465) = 7.91673.

21. The Newton’s estimates “blow up.” (Draw the graph to see why.) The underlying reason is that if
f (x) = x1/3, then (as algebra shows),x − f (x)/ f ′(x) = −2x.
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§4.7 Building Polynomials to Order; Taylor Polynomials

1. The value and derivatives are (in order), 1, 1, 2, 6, 24, 120, 0, 0. Note that all derivatives beyond the fifth
are zero.

3. (a) P2(x) = 1 + 2(x − 1) + (x − 1)2.

(b) Multiplying out P2(x) givesx2. This happens because the quadratic approximation to a quadratic
function f is f itself.

5. f ′(x) = 1
3x−2/3 and f ′′(x) = −2

9x−5/3. Therefore, since,f (8) = 2, f ′(8) = 1/12, and f ′′(8) = −1/144,

P2(x) = 2 + 1

12
(x − 8) − 1

288
(x − 8)2 = 10

9
+ 5

36
x + 1

288
x2.

7. Theorem?? saysp2(x) = 2 + b2(x − 1)2 + b3(x − 1)3. The conditionsp2(2) = 1 andp′
2(2) = 0 imply

together thatb2 = −3 andb3 = 2.

9. If f (x) = 1

1 − x
, n = 3, andx0 = 0, thenP3(x) = 1 + x + x2 + x3.

11. If f (x) = ln x, n = 3, x0 = 1, thenP3(x) = (x − 1) − (x − 1)2

2
+ (x − 1)3

3
.

13. If f (x) = √
x, n = 3, x0 = 4, thenP3(x) = 2 + x − 4

4
− (x − 4)2

64
+ (x − 4)3

512
.

15. 
(x) = 1; q(x) = 1 − x2/2

17. f (x) = ex has
(x) = 1 + x, q(x) = 1 + x + x2/2.

19. f (x) = arcsinx has
(x) = x, q(x) = x.

21. (a) The graph of an odd function is symmetric about the origin. All graphs shown have that property.

(b) Theeven-orderMaclaurin polynomialsP2, P4, P6, andP8 are the same as the odd-order Maclaurin
polynomialsP1, P3, P5, andP7. (This happens because the sine function is odd. So, therefore, are all
of its Maclaurin polynomials.)

23. (a) We’ll use the linear approximationl (x) at x = 1. Since f (1) = 0 and f ′(1) = sin 1≈ 0.84147,
l (x) = 0 + sin 1(x − 1); l (0.5) = 0 + sin 1(−0.5) ≈ −0.42074.

(b) Whether the estimate above is too big or too small depends on the concavity off betweenx = 0.5
andx = 1. Notice thatf ′′(x) = 2x cos(x2); thus f ′′(x) > 0 for x in [−0.5, 1]; so f is concaveup,
and so the linear approximationunderestimates f.

(c) f ′′(1) = 2 cos 1≈ 1.08060; therefore the quadratic approximation atx = 1 has the form
q(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2 (x − 1)2 = 0 + sin 1(x − 1) + cos 1(x − 1)2. Therefore
q(0.5) ≈ −0.28566.

25. Let f (x) = √
x andx0 = 100. Thenf ′(x) = 1/2

√
x, f (x0) = 10, and f ′(x0) = 1/20. Therefore,

f (103) = f (x0 + 3) ≈ f (x0) + 3 f ′(x0) = 10+ 3/20 = 10.15. A calculator gives
√

103≈ 10.14889; the
difference is 10.15− 10.14889= 0.00111.

27. Let f (x) = sinx andx0 = π/3. Then f ′(x) = cosx, f (x0) = √
3/2 and f ′(x0) = 1/2. Therefore,

sin 58◦ = sin(π/3 − π/90) ≈ f (x0) − (π/90) f ′(x0) = √
3/2 − π/180≈ 0.84857. A calculator gives

sin 58◦ ≈ 0.84805; the difference is 0.84857− 0.84805= 0.00052.

29. (a) 
p(t) = 25t ; 
p(1) = 25; 
p(−1) = −25

(b) qp(t) = 25t + t2; qp(1) = 26;qp(−1) = −24

Copyright c© Houghton Mifflin Company. All rights reserved 75



CHAPTER 4: USING THE DERIVATIVE

(c) 
v(t) = 25+ 2t ; 
v(1) = 27

31. (a) 
(t) = 100 meters;
(1) = 100 meters

(b) q(t) = 100− 4.9t2 meters;q(1) = 95.1 meters

33. (a) f (1) = 1, f ′(1) = 0

(b) no,q(1) = 3 �= 1

(c) no,r ′(1) = −4 �= 0

(d) no,s′′(1) = 4 > 0 but f ′′(1) < 0

35. No. Sincef has a local maximum atx = 1, f ′(1) = 0. Sincep′(1) �= 0, p cannot be a Taylor polynomial
for f .

37. The polynomialp(x) = x − x3/6 is the fourth-order Taylor polynomial approximation tof (x) = sinx
based atx0 = 0. Therefore,p(0) = f (0), p′(0) = f ′(0), p′′(0) = f ′′(0), p′′′(0) = f ′′′(0), and
p(4)(0) = f (4)(0).

39. Let f (x) = sinx andg(x) = x (cosx)1/3. The graphs off andg are almost indistinguishable in a viewing
window centered at the origin becausef (0) = g(0), f ′(0) = g′(0), f ′′(0) = g′′(0), f ′′′(0) = g′′′(0), and
f (4)(0) = g(4)(0). [NOTE: f (5)(0) �= g(5)(0).]

41. Let f (x) = ex andg(x) = 5/2 − 5
3 cosx + 1

6 cos(2x) + 5
3 sinx − 1

3 sin(2x). The graphs are almost
indistinguishable in a viewing window centered at the point(0, 1) becausef (0) = g(0), f ′(0) = g′(0),
f ′′(0) = g′′(0), f ′′′(0) = g′′′(0), and f (4)(0) = g(4)(0). [NOTE: f (5)(0) �= g(5)(0).]

43. (a) q100(x) = 1

(b) q010(x) = x

(c) q001(x) = x2/2

(d) The graphs are two lines and a parabola.

(e) If q = aq100(x) + bq010(x) + cq001(x), then
q(0) = aq100(0) + bq010(0) + cq001(0) = a · 1 + 0 + 0 = a; the other parts are similar.

45. (a) Yes, they are inflection points, sincep′′
1(1/2) = 0 andp′′

2(3/2) = 0.

(b) Theorem??says thatp3(x) = 2 + 0(x − 1) − 6(x − 1)2 + a3(x − 1)3. To finda3 we usep3(2) = 1.
But p3(2) = 2 − 6 + a3 = 1 �⇒ a3 = 5, sop3(x) = 2 − 6(x − 1)2 + 5(x − 1)3.

(c) The inflection point onp3 is atx = 7/5.
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§4.8 Why Continuity Matters

1. The graph off has points of discontinuity at−3, −1, 1, and 2. Thus,f is continuous on the intervals
[−4, −3), (−3, −1), (−1, 1), (1, 2), and(2, 4).

3. The functionh(x) = f (x) + g(x) will be continuous whereverboth f andg are continuous. Thus, points
of discontinuity of eitherf or g are possible points of discontinuity ofh. By examining values ofh near the
points−3, −1, 1, 2, and 3, we find thath is continuous on the intervals[−4, −3), (−3, −1), (−1, 1), (1, 2),
(2, 3), and(3, 4).

5. The functionh(x) = f (x)/g(x) will be continuous whereverg(x) �= 0 and bothf andg are continuous.
Thus, the points−3, −1, −1/3, 1, 2, and 3 are possible points of discontinuity. By examining values ofh
near these points, we find thath is continuous on the intervals(−4, −3), (−3, −1), (−1, −1/3), (−1/3, 1),
(1, 2), (2, 3), and(3, 4).

7. Yes, there is an input tof that produces every output value betweenf (−4) = −2 and f (4) = 1.

9. Yes,−2 = f (−4) ≤ f (x) ≤ f (0) = 2 if −4 ≤ x ≤ 4. That is, f assumes both a maximum value and a
minimum value over the interval[−4, 4].

11. Sincef is continuous on the interval[0.1, 1], the EVT says thatf assumes both a minimum value and a
maximum value over this interval.

13. The interval(0, 1] is not a closed interval. Thus, since the hypotheses of the EVT are not satisfied,f need
not assume a maximumm and minimum value on this interval.

15. The functionf is not continuous on the interval[−1, 1], so the hypotheses of the theorem are not satisfied.

17. Sincef is a polynomial, it is continuous everywhere. Moreover,f (0) = 2 and f (1) = −1. Therefore,
since−1 < 0 < 2, the IVT implies thatf has a root somewhere in the interval(0, 1).

19. Note that 12 < 3 < 22, so
√

3 lies in the interval[1, 2]; the midpoint of this interval ism1 = 3/2. Since
(m1)

2 = 9/4 < 3,
√

3 lies in the interval[3/2, 2]; the midpoint of this interval ism2 = 7/4. Since
(m2)

2 = 49/16 > 3,
√

3 lies in the interval[3/2, 7/4]; the midpoint of this interval ism3 = 13/8. Since
(m3)

2 = 169/64 < 3,
√

3 lies in the interval[13/8, 7/4]; the midpoint of this interval ism4 = 27/16.

21. (a) Each iteration of the bisection method reduces the width of the interval in which the root is guaranteed
to be located by a factor of 2. Thus, after 1 iteration, the interval has length 1/21 = 1/2; after 2
iterations, the interval has length 1/22 = 1/4; and so forth. The smallest integern for which
1/2n < 10−2 is n = 7. Therefore, 7 iterations of the bisection method are necessary to guarantee an
estimate of the root within 10−2.

(b) The smallest integern for which 1/2n < 10−3 is n = 10. Therefore, 10 iterations of the bisection
method are necessary to guarantee an estimate of the root within 10−3.

(c) The smallest integern for which 1/2n < 10−5 is n = 17. Therefore, 17 iterations of the bisection
method are necessary to guarantee an estimate of the root within 10−5.

(d) The smallest integern for which 1/2n < 10−10 is n = 34. Therefore, 34 iterations of the bisection
method are necessary to guarantee an estimate of the root within 10−10.

23. For each distance between 37 and 12 miles, there was some time at which I was that far from home.
(Distance is a continuous function of time.)

25. The IVT says nothing—the amount of money in my pocket is not a continuous function of time, since only
2-decimal place numbers are possible.

27. Letg(x) = f (x) − x. Then,g is a continuous function,g(0) > 0, andg(1) < 0. The IVT implies thatg
must have a root in the interval[0, 1], so f (x) − x = 0 �⇒ f (x) = x for somex in the interval[0, 1].
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29. Sincef (0) · f (1) < 0, the two factors must have opposite signs. Therefore, the IVT guarantees that
f (x) = 0 for somex in the interval(0, 1).

31. The statementcannot be true sincef (x) ≤ 5 for all x.

33. The statementmust be true because, by hypothesis, there is a value ofx for which
f (x) = −7 �⇒ | f (x)| = 7.

35. The statementmight be true. If f is continuous on[1, 5], then the IVT guarantees that the statement is true.
However, if f isn’t continuous, the statement might be true, but it need not be.

37. The statementmight be true.

Notice first that
f (1) · f (5) < 0 ⇐⇒ f (1) and f (5) have opposite signs.

Thus the question is whether having a root in(1, 5) means, necessarily, thatf changes sign fromx = 1 to
x = 5. A little thought shows thatf may or may not do so. E.g.,f (x) = x − 3 doeschange sign from
x = 1 to x = 5, but f (x) = (x − 3)2 doesn’t.

39. Sincef is a polynomial, it is continuous everywhere. Also, sincef (0) = 2 and f (−1) = −5, the IVT
guarantees that a root off lies in the interval(−1, 0).

41. Consider the functiong(x) = f (x) − x. Finding afixed pointof f is the same thing as finding aroot of g,
sinceg(x) = 0 ⇐⇒ f (x) = x. So let’s show thatg has a root.

By hypothesis,g(0) = f (0) ≥ 0, andg(1) = f (1) − 1 ≤ 1 − 1 ≤ 0. Thusg(0) ≥ 0 ≥ g(1).

If either g(0) = 0 or g(1) = 0 we’vefoundour root, and we’re done. The only alternative is that
g(0) > 0 > g(1). In this case, the IVT guarantees thatg has a root somewhere in(0, 1), so we’re done.
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§4.9 Why Differentiability Matters; The Mean Value Theorem

1. The converse of the given statement is “If it’s cloudy, then it’s raining.” The given statement is true, but its
converse is false.

3. The converse of the given statement is “Ifx > 1, thenx > 2.” The given statement is true, but its converse
is false.

5. The converse of the given statement is “Iff (x) = x2, then f ′(x) = 2x.” The given statement is false, but
its converse is true.

7. If m = (a + b)/2, then
(
q(b) − q(a)

)
/(b − a) = q(m).

9. No such function exists. Suppose thatx1, x2, andx3 are roots off . Rolle’s theorem implies thatf must
have a stationary point betweenx1 andx2 and also betweenx2 andx3 since f (x1) = f (x2) = f (x3) = 0.
Thus, f must have at least 2 stationary points.

11. The sine function is an example of a function with infinitely many roots and infinitely many stationary
points.

13. Suppose thatf ′(x) > 2 for all x. Then the speed limit law implies thatf (1) − f (0) > 2. This contradicts
the fact thatf (1) − f (0) = 1. Therefore, it is impossible to find a differentiable functionf with the desired
properties.

15. No, f is not differentiable atx = 0.

17. Yes, f is continuous on the closed interval[1, 2] and differentiable on the open interval(1, 2).

19. Take a look at the graph off ′(x) on the interval[−1, 1]. You will see that it has a value of≈ 8 atx = −1,
and a value of 0 atx = 1. Since f ′(x) is a polynomial and therefore continuous, by the IVT there must
exist ac on [−1, 1] where f ′(c) = 2. Since f ′(x) must equal 2 at somec, then f (x) must have slope 2 at
that samec.

21. The MVT says thatf ′(c) = (
f (2) − f (1)

)
/(2 − 1) = 3 for somec in the interval(1, 2). Since

f ′(x) = 2x, the only suitable value ofc is c = 1.5.

23. Sinceg is not differentiable at 0, Rolle’s theorem doesn’t apply.

25. If f ′ is a continous function,f is differentiable on(1, 4). Since f (1) = f (4) = 0, Rolle’s theorem implies
that there must be ac between 1 and 4 for whichf ′(c) = 0.

27. If f ′ is not continuous,f ′ can “jump” from a positive to a negative value orvice versa.

29. (a) Suppose thatf (2) = 3. Then, according to the MVT, there would be a numberc such that 0≤ c ≤ 2
and f ′(c) = (

f (2) − f (0)
)
/(2 − 0) = 3/2. However, this contradicts the hypothesis thatf ′(x) < 1.

Thus, f (2) = 3 is not possible.

(b) 3/2 ≤ f (3) ≤ 3

(c) −1 ≤ f (−1) ≤ −1/2

31. (a) f ′(1) = 3, and f ′(3) = −1.

(b) f (1) = 2. The equation of the line tangent to the graph off at x = 3 is y = 5 − x. Thus, f (3) = 2.

(c) Since the function is differentiable everywhere,f ′(1) > 0, and f ′(3) < 0, there must, by Rolle’s
Theorem, be some point wheref ′(x) = 0.

(d) To get more than one maxima on that interval, the second derivative would have to have a sign change.
Since it doesn’t, that meansf ′(x) must decrease all the time, and that means it can only cross they
axis once, which in turn means thatf (x) can have only one critical point, which must be a maximum,
due to the negative second derivative.
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33. (a) Yes. The trucker traveled 100 miles in 1.25 hours. The MVT asserts that the trucker’s speed must have
been 80 mph at some time during the trip.

(b) The trucker’s fine will be at least $125= $50+ $5 · 15.
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