Review Questions

1. Evaluate the following limits. If the limit does not exist, write DNE. Show work or explain how you arrived at your solution.
$\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}$
$\lim _{x \rightarrow \infty} \frac{3 x}{x^{2}-x}$
$\lim _{x \rightarrow-\infty} \frac{e^{x}}{x^{2}}$
2. Evaluate the $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}-x}$ and state what it tells you about the graph of $\frac{x^{2}-1}{x^{2}-x}$
3. Given a function f that is continuous at $x=a$, state True or False for each of the following and justify your response.
a. $\lim _{x \rightarrow a} f(x)$ exists
b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ exists
c. f is differentiable at $x=a$
4. Suppose that f and f^{\prime} are continuous, differentiable functions. Furthermore, suppose that f has a root at -2 and f^{\prime} has a root at 1 . If these are the only roots of f and f^{\prime} respectively, in the interval $[-5,5]$, where in this interval might f achieve it's minimum value?
5. The temperature at 10 PM was 45 degrees. At 6:00 AM it was 54 degrees.
a. Was there a time between 10 PM and 6 AM when the temperature was exactly 49 degrees? Explain why or why not.
b. Could the temperature at 3:30 AM have been 42 degrees?
6.

Let f be a function whose domain is the open interval (1,5). The figure above shows the graph of $f^{\prime \prime}$. Which of the following describes the relative extrema of f^{\prime} and the points of inflection of the graph of f^{\prime} ?
(A) 1 relative maximum, 1 relative minimum, and no point of inflection
(B) 1 relative maximum, 2 relative minima, and no point of inflection
(C) 1 relative maximum, 1 relative minimum, and 1 point of inflection
(D) 1 relative maximum and 2 points of inflection
(B) 1 relative minimum and 2 points of inflection
7. At which of the five points on the graph in the figure at the right are $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ both negative?
(A) A
(B) B
(C) C
(D) D
(E) E

8.

What is $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}\right)}{h}$?
(A) -1
(B) $-\frac{\sqrt{2}}{2}$
(C) 0
(D) 1
(E) The limit does not exist.
9.

The graph of a function f is shown above. If $\lim _{x \rightarrow b} f(x)$ exists and f is not continuous at b, then $b=$
(A) -1
(B) 0
(C) 1
(D) 2
(E) 3
10.

A bug is crawling along a straight wire. The velocity, $v(t)$, of the bug at time $t, 0 \leq t \leq 11$, is given in the graph above.

According to the graph, at what time t does the bug change direction?
(A) 2
(B) 5
(C) 6
(D) 8
(E) 10

According to the graph, at what time t is the speed of the bug greatest?
(A) 2
(B) 5
(C) 6
(D) 8
(E) 10
11. Find the derivative of the following:
$f(x)=e^{x} \sin x$
$f(x)=\frac{\ln x}{x}$

$$
f(x)=\cos \left(x^{2}+1\right)
$$

12. Find the equation of the tangent line to $x+2 x y=y^{2}$ at $(0,-1)$.
