Names _____

MAT 161 Sections 3.1 & 3.2 Problems

1) Differentiate:
(a)
$$f(x) = \frac{e^{2x}}{\cos x}$$

(b)
$$f(x) = \sqrt{3x - 1} \ln(x)$$

(c) $f(x) = \sin(e^{x^2 - 1})$

(d) $f(x) = \sqrt{x^2 e^x}$

2) Find the following limit by recognizing the form. Explain how you arrived at your answer.

$$\frac{\frac{\sin(\frac{\pi}{4}+h)}{\cos(\frac{\pi}{4}+h)}-(1)}{\frac{h}{h}}$$

3) Suppose that f(0) = 3 and the graph f' is shown below. Let $g(x) = e^x f(x)$.

a. Evaluate g'(0).

b. Is g increasing at x = 1? at x = 2? Justify your answers

c. Estimate g''(0).

d. Is g concave up at x = 1? at x = 2? Justify your answers.

x	f(x)	f'(x)	g(x)	g'(x)	h'(x)	j'(x)
-2	1	1	-3	4		-1/9
1	0	-2	1	1	-2	
0	-1	2	-2	1		
1	2	-2	-1	2	6	
2	3	-1	2	-2		1

4) Given that $h(x) = f(x) \cdot g(x)$ and $j(x) = \frac{f(x)}{g(x)}$, complete the table below.

5) Let $h(x) = (f \circ g)(x)$ where f and g are functions defined by the graphs below.

Evaluate h(-2), h(1), and h(3).