
Addenda & Corrigenda (in progress)

(XT means X lines from the top; YB means Y lines from the bottom.)

Chapter 1

•Misprint p5, 5T (thank you Rich Senko): ida should be idea.

•Misprint p24, in reference [6]: 243 should be 243-244.

• Add after Exercise 1.13 an exercise about showing that for any odd integer k,
√
k2 + 1 is irrational [N. Lord:

Extending the parity proof that
√
2 is irrational, Math. Gazette 99 (2015), p155].

• Perhaps of interest are 1. D.M. Bloom: A once-sentence proof that
√
2 is irrational, Math. Mag 68 (1995)), p286;

and follow-up 2. J. Bergen: Is this the easiest proof that nth roots are always integers or irrational?, Math. Mag. 90
(2017), p225.

Chapter 2

• The paper [C. Mortici: A very elementary proof of Bernoulli’s inequality, College Math. J. 46 (2015), 136-137]
contains an excellent simple proof of Bernoulli’s Inequality for x > 0, and extends it somewhat for x > −1. It is also
noted there that Isaac Barrow (Newton’s teacher) had a version of Bernoulli’s Inequality 19 years before Bernoulli!

• Add after Exercise 2.3:

Show that for xj ≥ 0,
n∏
j=1

(1 + xj) ≥ 1 +
n∑
j=1

xj . (All xj ’s equal is Bernoulli’s Inequality.)

• In Exercise 2.24 (thank you Mehdi Hassani, Dragan Banjevic): 2+ 4+6+ ···+(2n)
1+ 3+5+ ···++(2n−1) should be

(
2+ 4+6+···+(2n)

1+ 3+5+ ···++(2n−1)

)n
.

Without the power n the limit is 1. With it, the limit is e.

• In Exercise 2.29, something subtle here needs consideration. See [A. Beardon: The area of a quadrilateral, Math.
Gazette 101 (2017), 492-494].

• Add after Exercise 2.33 [Problem 11751 (C. Kempiak, A. Viejo, B. Suceavă & B. Karaivanov), Amer. Math. Monthly
122 (2015), 905-906]: In a triangle with angles of radian measure A,B,C, show that

cscA+ cscB + cscC

2
≥ 1

sinA+ sinB
+

1

sinB + sinC
+

1

sinC + sinA
,

with equality occurring if and only if the triangle is equilateral.

• Add after Exercise 2.50 [D.M. Bătineţu-Giurgiu, N. Stanciu, and E. Lampakis: Problem 1050, College Math. J.
47 (2016), 143-144]:
We saw in Remark 2.14 that the isoperimetric inequality for an n-sided polygon with area T and perimeter P is

T ≤ P 2

4n tan (π/n)
.



Suppose now that the polygon is convex with sides lengths ak, and let m ≥ 0. Show that(
n∑
k=1

a2m+4
k

)(
n∑
k=1

1

a2mk

)
≥ 16T 2 tan2(π/n).

• Add after Exercise 2.56 [M. Can, G.E. Bilodeau, & M. Vowe: Problem 1059, College Math. J. 47 (2016), 304-305]: (If
you did Exercise 2.54) Let A,B,C be a triangle. Use Chebyshev’s Inequality (and Jensen’s: cos(x/2) is concave on
(0, π)) to show that

sin A
2 + sin B

2 + sin C
2

sinA+ sinB + sinC
≥ 1√

3
.

Chapter 3

• In Exercise 3.37 (thank you Meng Lin Ma): Assume also that f > 0.

• Add a Remark at the end of Section 3.3: In [K. Razminia: A short proof of symmetric inequalities, College. Math. J.
46 (2015), 364-366], the Extreme Value Theorem is leaned upon heavily, in proofs of the AGM Inequality (and more)
and the Cauchy-Schwarz inequality.

Chapter 4

• Section 4.2: A similar approach to our proof of the Product Rule (and perhaps even slicker!) can be found in
P. Josevich: An alternative approach to the product rule, Amer. Math. Monthly 123 (2016), p470.

• Add after Exercise 4.11 [A. Soares & A.L. dos Santos: The straddle lemma in an introductory real analysis course,
Int. J. Math. & Math. Ed. Sci. Tech. 48 (2016), 428-434]: Say that f is strongly differentiable at x0 to mean

lim
(x,y)→(x0,x0)

f(x)− f(y)
x− y

exists. Show that f is strongly differentiable at x0 if and only if f ′ is continuous at x0.

Chapter 5

• Add at the very end of section 5.1: See also [M.J. Poliferno: A natural auxiliary function for the mean value
theorem, Amer. Math. Monthly 69 (1962), 45-47] and [A.P. de Camargo: The geometric mean value theorem, Int. J.
Math. & Math. Ed. Sci. Tech. 49 (2018), 613-615.]

• Add after Exercise 5.36 [Problem 11788 (S. Andriopoulos & B. Karaivanov), Amer. Math. Monthly 123 (2016),
p619] Let n be a positive integer and let 0 < yj ≤ xj < 1 for 1 ≤ j ≤ n. Show that

lnx1 + · · ·+ lnxn
ln y1 + · · ·+ ln yn

≤
√

1− x1
1− y1

+ · · ·+ 1− xn
1− yn

, (and this is strict for n > 1).

Hint (suggestion): Use induction; show first that f(x) =
lnx√
1− x

is increasing on (0, 1).

• In reference [54]: 1980 should be 1989.



Chapter 6

• p122, 6B in Section 6.2: Perhaps also of interest is the paper [I. Patyi: On some elementary functions, Math.
Gazette 99 (2015), 263-275].

• For some collateral reading, see also the excellent paper [N. Lord: The versatile exponential inequality ex ≥ 1+ x,
Math. Gazette 101 (2017), 470-475].

• Add after Exercise 6.32 [S.P. Andriopoulos, K. Kaczkowski: Problem 11770, Amer. Math. Monthly 123 (2016),
p300]: Let a > b > 1 and x > y > 0. Show that

ax − by

x− y
> a(x+y)/2 ln(a) >

(
a+ b

2

)(x+y)/2

ln

(
a+ b

2

)
.

•Misprint p157, in reference [7]: Should be p651 here, not p615.

• Oversight p157, in reference [29]: This paper is authored by Hansheng, Y. and Lu, B.

• Oversight p157, in reference [36] (thank you Eunjeong Yi): This paper is authored by Kan, C.X and Yi, E.

•Misprint p157, in [39] (thank you Fuad Kittaneh): This paper is authored by Kittaneh, F. & Hirzallah, O.

Chapter 7

• Add to general remarks at the end of Section 7.2 the recent paper:
[C. Tana & S. Lia: Some new mean value theorems of Flett type, Int. J. Math. Ed. Sci. Tech. 45 (2014), 1103-1107].

•Misprint in Exercise 7.14, p168: 5.39 should be 5.10.

• Add after Exercise 7.14 p169 [C. Mortici: Funny forms of the Mean value theorem, Amer. Math. Monthly 122
(2015), p780]: (a) Let a < b with a 6= −b. Let f be continuous on [a, b] and differentiable on (a, b), with af(b) = bf(a).
Show that there is c ∈ (a, b) such that f ′(c) = f(a)+f(b)

a+b .
(b) Let a < b with ab > 0. Let f be continuous on [a, b] and differentiable on (a, b), with 1/f(b)− 1/f(a) = 1/b− 1/a.
Show that there is c ∈ (a, b) such that f ′(c) = f(af(b)

ab .

Chapter 8

• Add after Exercise 8.3 [J. Singh, Another proof of the Binomial theorem, Amer. Math. Monthly 124 (2017), p658]:

Here’s another proof of the Binomial theorem: (a) Show that
d

dt

tk

(1 + t)n
=

ktk−1 − (n− k)tk

(1 + t)n+1
.

(b) Multiply through by n!
k!(n−k)! and sum from 0 to n to show that

d

dt

n∑
k=0

n!

k!(n− k)!
tk

(1 + t)n
= · · · · · · = 0 .

(c) Make a couple of observations which allow you to conclude that
n∑
k=0

n!
k!(n−k)! t

k = (1 + t)n.



• Add after Exercise 8.39 [G. Apostolopoulos, the Hofstra Univ. Problem Solvers & Á. Plaza: Problem 1039, College.
Math. J. 46 (2015), 143-144]: Let ABC be an acute triangle. Show that∑

A,B,C cyclic

secA√
cosA+ cosB

≥ 6.

• Add after Exercise 8.41 [M. Bence & J.C. Smith: Problem 11843, Amer. Math. Monthly 124 (2017), p374]:
Show that f(t) = 1

1+et is convex on [0,∞). Show that

M∑
j=1

1

1 + zj
≥ M

1 + (z1z2 · · · zM )1/M
.

• Add after Exercise 8.48 [J.L. Diaz-Barrero & B. Bradie: Problem 1039, College. Math. J. 46 (2015), p373]: Let
x1, x2, · · · , xn > 0 with x1x2 · · ·xn = 1 (and n > 1). Show that for each m ≥ 2, we have

n− 1

n

∑
cyclic

xm1
x2 + x3 + · · ·+ xn

≥ 1.

Hint: Cauchy-Schwarz Inequality, AGM Inequality, Power Mean Inequality (see exercise above).

Chapter 9

• p213: Computation of
∫ 1

0
1

1+xdx = ln(2), as in [F. Sánchez & J.M. Sanchis: Darboux sums and the alternating
harmonic series, Math. Mag. 91 (2018), p96], could be added here as well (perhaps before Example 9.7).

• p215. At the end of Section 9.1, add a remark or two about the cool paper [I.C. Bivens & B.G. Klein: The me-
dian value of a continuous function, Math. Mag. 88 (2015), 39-51].

• p229, 8T . After [33], add also: E. Omey: On Xiang’s observations concerning the Cauchy-Schwarz Inequality,
Amer. Math. Monthly 122 (2015), 696-698. — which extends [33] very nicely.

• Misprint in Exercise 9.7, p235 (thank you Felipe Filho): The exponent on the right-hand side of the inequality
to be shown should be −xf(x), not −xg(x).

• Add after Exercise 9.22 [Problem 1064 (M. Merca & B. Dunn), College. Math. J. 48 (2017), 140-141]:
Let n be a positive integer. Show that

0 <
1

π

22n(
2n
n

) − n∑
k=1

(
cos

(
kπ

2n+ 1

))2n+1

< 1 .

• Add after Exercise 9.36 [Problem 1024 (O. Furdui & E. Herman), College. Math. J. 46 (2015), p146.]: Let f be
continuous on [a, b] with ∫ b

a

f2(x) dx =

(∫ b

a

f(x) dx

)2

.

(a) Show that b− a = 1. (b) Show that f is constant.



•Add after Exercise 9.36 [Problem 11780 (C. Lupu, T. Lupu, & R. Tauraso), Amer. Math. Monthly 123 (2016), 614-615]:
Let f be positive and concave on [0, 1]. Show that

3

4

( 1∫
0

f(x) dx
)2
≤ 1

8
+

1∫
0

(f(x))
3
dx .

• Add after Exercise 9.37 [C. Lupu & R. Boukharfane: Problem 11819, Amer. Math. Monthly 123 (2016), p1054]:
Let f be continuous and nonnegative on [0, 1]. Show that∫ 1

0

f(x)3 dx ≥ 4

∫ 1

0

x2f(x) dx

∫ 1

0

xf(x)2 dx.

• Add after Exercise 9.40 [Problem 1069 (Á. Plaza & M. Andreoli) College Math. J. 48 (2017), 60-61]:
Let f1, f2, · · · , fn be positive and continuous on [0, 1]. Use Exercise 9.40 to show that

1∫
0

f1(x)

f2(1− x)
dx ·

1∫
0

f2(x)

f3(1− x)
dx · · · ·

1∫
0

fn(x)

f1(1− x)
dx ≥ 1 .

• Add after Exercise 9.51(c): Show that

(
e2∫
1

(
ln x
x

)n
dx

)1/n

→ 1/e as n→∞ .

[G. Apostolopoulos, Missouri State Univ. Problem Solving Proup: Problem 1954, Math. Mag. 88 (2015), 381-382.]

•Misprint p247, in reference [1]: Wilkins, E.J. Jr. should be Wilkins, J. E., Jr.

•Misprint p248, in reference [28]: Sieffert should be Seiffert.

Chapter 10

• Add at the end of Section 10.1: Perhaps also of interest is the reference: [J.R. Nurcombe: Rearranging the signs of
the alternating harmonic series, Math. Gazette 98 (2014), 321-324].

• Add to Exercise 10.21:
Show that

∫
sec(x) dx = 1

2 ln |
1+sin(x)
1−sin(x) | + C, and that

∫
csc(x) dx = 1

2 ln |
1−cos(x)
1+cos(x) | + C.

• Example 10.12, p258:
This curious fact was apparently first observed by D.P. Dalzell (On 22/7, J. London Math. Soc. 19 (1944), 133-134.)

• Add after Exercise 10.12 [J. Sandor: A note on the Logarithmic mean: Amer. Math. Monthly 123 (2016) p112]:
(a) Verify that for t > 1, we have

4

(t+ 1)2
<

1

t
<

1

2
√
t

+
1

2t
√
t
.

(b) For 0 < a < b, integrate over [1, b/a] and do some tidying, to obtain (again!) G < L < A .

• Exercise 10.15b (thank you Dragan Banjevic) is clearly nonsense. (My word, not Dragan’s!) Omit it post-haste.
Also, in Exercise 10.15c, the a > 1 there must be an integer.



• Add after Exercise 10.48
[C. Lupu & NY Math Circle: Problem 11814, Amer. Math. Monthly 123 (2016), 1051-1052]:
Let φ, defined on [0, 1], have a continuous nonzero derivative, with φ(0) = 0 and φ(1) = 1. Let f , continuous on
[0, 1], satisfy

∫ 1

0
f(x) dx =

∫ 1

0
φ(x)f(x) dx . Show that there is t ∈ (0, 1) such that

∫ t
0
φ(x)f(x) dx = 0.

• In the references, p280, item 39: The volume number 20 there should be volume 29.

Chapter 11

• Add after Exercise 11.30 [M.W. Botsko and K.W. Lau: Problem 1945, Math. Mag. 88 (2015), p241]:

(a) Let f be continuous on [0, 1] with
1∫
0

f(x) dx = 0. Let φ be differentiable on [0, 1] with φ(0) = 0 and φ′(x) > 0 for

x ∈ (0, 1). Show that there exists x0 ∈ (0, 1) such that∫ x0

0

f(x)φ(x) dx = 0 .

•Misprint p310, in reference [35]: Sieffert should be Seiffert.

Chapter 12

• At beginning of Section 12.4, p318, the modifications of [18] which are given in Daners’ paper [5] are rediscovered
in [D.J. Velleman: Monthly Gems, Amer. Math. Monthly 123 (2016), p77].

• Daners’ ideas in [5], which we follow in Section 12.4, are extended nicely in [B.D. Sittinger: Computing ζ(2m)
by using telescoping sums, Amer. Math. Monthly 123 (2016), 710-715].

• A wonderful approach to Theorem 12.7 in Section 12.4 appears in [S.G. Moreno: A short and elementary proof
of the Basel problem, College Math. J. 47 (2016), 134-135]. This approach is arguably simpler than the one in the book!

• Another excellent and very elementary approach to Theorem 12.7 in Section 12.4 appears in [N. Lord: The most

elementary proof that
∞∑
k=1

1
k2 = π2

6 ?, Math. Gazette 100 (2016), 429-434]. This paper is definitely worth a good look.

• As regards Exercise 12.4 about Vieta’s formula, see also the cool paper [C. Boucher: Viète’s formula and an error
bound without Taylor’s formula, Int. J. Math. & Math. Ed. Sci. Tech. 49 (2018), 455-458].

• Add after Exercise 12.8 [G. Stoica & E.A. Herman, Problem 1991, Math. Mag. 90 (2017), 232-233]:
Show that

lim
n→∞

n−1∑
k=1

n2

k2(n− k)2
=

π2

3
.



• Add after Exercise 12.9 [J. Gräter and K.J. Withs: On elementary bounds for
∑∞
k=n k

−s, Amer. Math. Monthly 122
(2015), 155-158]:
(a) Show that for s > 1, hs(x) = (1− x)1−s − (1 + x)1−s − 2x(s− 1) is strictly positive on (0, 1).

(b) Use (a) to show that (
1− 1

2k

)1−s

−
(
1 +

1

2k

)1−s

>
s− 1

k
.

(c) Use (b) to show that

k−s <

(
k − 1

2

)1−s
s− 1

−
(
k + 1

2

)1−s
s− 1

.

(d) Conclude that
∞∑
k=n

k−s <

(
n− 1

2

)1−s
s− 1

.

• Oversight p329, in reference [26]: This paper is authored by Sondow, J. and Yi, H.

Chapter 13

•Misprint p338, line 13T : The 0 there should be a 1. That is, e
1
4n → 1 as n→ +∞. (Blushes.)

• Add in (or after) Example 13.10 p337: In [M. Shauo: Bounding the Euler-Mascheroni constant, College. Math.
J. 46 (2015), p347], the Midpoint Rule is used to obtain also γ < 2(1− ln(2)) ∼= 0.6137 . I should have thought of this!

Chapter 14

Appendix

• p 405, 8T : To references [2,7,8], add the interesting paper [R. Kantrowitz & M. Neumann: Another face of the
Archimedean property, College. Math. J. 46 (2015), 139-141], in which the Archimedean Property (in any ordered
field) is shown to be equivalent with conditions involving various simple geometric sequences, including the geo-
metric series test (cf. Example 2.3 in Chapter 2).


