A3 & A4 – Intro to the TI-84

Beginning TI-84+ Helpful Spots

<table>
<thead>
<tr>
<th>Window</th>
<th>Zoom</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>y =</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
Plot1 Plot2 Plot3
\[ Y_1 = 0 \]
\[ Y_2 = 0 \]
\[ Y_3 = 0 \]
\[ Y_4 = 0 \]
```

<table>
<thead>
<tr>
<th>Stat Plot</th>
<th>Tblset</th>
<th>Format</th>
<th>Calc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Mode</th>
<th>Stat</th>
<th>Stat Calc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math</th>
<th>Number</th>
<th>Probability</th>
<th>Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linking</th>
<th>Test</th>
<th>Draw</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory</th>
<th>Catalog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graphing Linear equations

1) Show the graph of: \(y = 2x - 5 \) and \(y = -2x - 5 \)
 * table of values *
 What do both lines have in common? ______________

2) Show the graph of: \(x + y = 180 \).
 * you must set everything = to y; change your window *
 What kind of shape have you created? ______________

3) Show the graph of: \(y = x \); \(y = 2x \); \(y = 3x \); \(y = 4x \); up to \(y = 10x \).
 * try Zoom Fit *
 What do all the lines have in common? ______________

Graphing two Linear equations and finding intersection

1) You open up a new business and need to purchase a copier machine.
 Two options are available:
 * Acme copiers charge $250 plus $.01/copy.
 * Best printers charge $70 plus $.03/copy.
 \((x = \# \text{ of copies}; \ y = \text{cost to rent})\)
 * write both equations in terms of \(y = \); change window; intersection*
 a) Show the graph of each equation.
 b) When do both copiers cost the same? __________
 c) Which option is the best buy? _____________

2) The Tortoise and the Hare decided to have a race. The Hare was generous by giving the Tortoise a 100 ft. head-start. The Hare runs 5 ft./sec. and the Tortoise speed is 0.1ft./sec.
 * write both equations in terms of \(y = \); change window; intersection*
 a) Show the graph of each equation.
 b) Use the graph to tell when the Hare reaches the tortoise? ________
Graphing lines that are not perfectly straight

1) Show the graph of: \(y = x^2 \) and \(y = -x^2 \)
 a) What do you notice about the graphs? __________
 b) Where do the lines intersect? _____________

2) Show the graph of: \(y = -x + 6 \) and \(y = x^2 \).
 a) What are the points of intersection? _____________
 b) What happens when you set these equal to each other? _____

Exploration problems

1) Graph: \(y = 10 - x \); \(y = 10 + x \); \(y = -10 - x \); and \(y = -10 + x \).
 a) What did you just create? _____________

2) Tom saved $1200 and is saving $50/month.
 Eileen saved $1500 and is saving $25/month.
 a) Show the graph of each equation.
 * adjust your window *
 b) When do Tom and Eileen have the same amount of money? ___
 c) After how many months will Tom have saved more money? ___

3) Solve the following system of equations graphically.
 a) \(y = 2x - 1 \)
 \(y = -3x + 4 \)

 b) \(y = x^2 + 3x + 1 \)
 \(y = 3x + 2 \)

4) Graph the system of inequalities.
 a) \(y < 3x - 5 \)
 \(y \geq 2x^2 - 8 \)

5) Graph the polar equation:
 \(r = 8 \cos 4\theta \)
TI84+ Activities

I) 1.

II) 1.

III) 1.

IV) 1.

2a.

b.

3. a.

b.

4a.
TI-84 Plus Demo
jimjeckovich@adelphi.net, jjeckovich@nfschools.net

Basic Operations and MATH key.

1
\[5+3\times2-(5-7)^3\]
\[\sqrt[3]{-27}\]
\[.75\times\text{Frac}\]

2
\[\sin(\pi/2)\]
\[\sin(\pi/2)\]
\[\cos^{-1}(-1)\]

3
\[5\times\sqrt{32}\]
\[4\times\sqrt{81}\]
\[\text{abs}(-9)\]

4
\[\text{round}(1.2345,3)\]
\[\text{lcm}(12,18)\]
\[\text{gcd}(34,51)\]

5
\[\text{conj}(3+4i)\]
\[\text{angle}(3+4i)\]
\[\text{abs}(3+4i)\]

6
\[\text{rand}\]
\[\text{randInt}(1,6)\]

7
\[5\text{ nPr} 2\]
\[5\text{ nCr} 2\]
\[7!\]

8
\[5=2\]
\[5>2\]
\[5<2\]
Graphing

Probability Simulation
Version 1.0
© 2000 Corey Taylor
Rusty Washer
PRESS ANY KEY

9

10

P1: y1=(x-1)(x-4)<x
P2: y2=x^3-5
P3: y3=
y4=
y5=
y6=

11

12

CALCULATE
1: value
2: zero
3: minimum
4: maximum
5: intersect
6: dy/dx
7: f(x)dx

13

14

P1: y1=2sin(.5x)
P2: y2=-4cos(2x)
P3: y3=
y4=
y5=
y6=
y7=

15
Normal Distribution

1-Var Stats
\[x = 87.30769231 \]
\[\overline{x} = 2270 \]
\[s = 198900 \]
\[\overline{s} = 5.334935657 \]
\[\sigma_x = 5.231334811 \]
\[n = 26 \]

Curve Fitting (Regression)

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[L2(7) = \]
Parametric Equations

Polar Equations

Sequences and Series
Multivariable Linear Systems

Solve: \[x + y + z = 6 \]
\[2x - y + z = 3 \]
\[3x - z = 0 \]

\[\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \]
\[\begin{bmatrix} 3 \\ 4 \end{bmatrix} = 0 \]