Activity 1

Describing One-Variable Data

The primary data set you will be working with in this activity is the heights (in feet) of tall buildings in Philadelphia,
Pennsylvania. This was stored in list PHILY under "Creating a
New List in the Editor" in Do This First and was entered in the order of the year completed. The data is duplicated in the table below.

548	405	375	400	475	450	412
375	364	492	482	384	490	492
490	435	390	500	400	491	945
435	848	792	700	572	739	572

(Source: Reprinted with permission from the World Almanac and Book of Facts 1996. Copyright © 1995 K-III Reference Corporation. All rights reserved.)

Topic 1-Histograms and Frequency Tables from Raw Data

Setting up the Plot

1. Press 2nd [STAT PLOT] 1:Plot1 ENTER to display screen 1. (Your screen may have Off highlighted.)
2. Turn on the plot by pressing ENTER with the flashing cursor on On. On will now be highlighted instead of Off.
3. Use to move down to Type.

The cursor flashes on the first type, Scatter plot $\mathfrak{\because}$. Starting from the first type, pressing \square moves to the other five types: xyLine $1 \sim \sim$, Histogram $\mathrm{Imb}_{\mathrm{m}}$, Modified Boxplot 따-*, Boxplot Probability plot $_$.
4. Press \square to move to Histogram, the third type, and then press ENTER to select it.
5. Use σ to move down to the input request Xlist. (Note that the input request depends on the plot type selected.)
Paste the list PHILY, and set Freq to 1 (because this is raw data, and you will count each value once).

Activity 1, Describing One-Variable Data (cont.)

Using the Automatic Window

Press ZOOM 9:ZoomStat TRACE followed by several \square for the display of the Histogram in screen 2. Notice that the lower class limit for the rightmost class is $\mathbf{m i n}=945$. There is only $\mathbf{n}=1$ value in this last cell indicating the tallest building is 945 feet. The class width is a bit strange, but it is nice to have this automatic plot capability.

Setting Up the Window

1. Press WINDOW for screen 3, which reveals that the shortest building ($\mathbf{X m i n}$) is $\mathbf{3 6 4}$ feet.
2. Change the values, as shown in screen 4 , to include all values with reasonable class limits and class width ($\mathbf{X s c l}=100$). Making Ymin the negative of Ymax/4 leaves enough room at the bottom of the plot screen for the class information.
3. Press TRACE for screen 5 with 11 buildings in the first height class. Using \square reveals frequencies of 10, 2, 2, 2, and 1 for the other classes.

The Frequency Table

The values shown in step 3 (above) make up the frequency table given below.

Class Limits	Frequency
350 to <450	11
450 to <550	10
550 to <650	2
650 to <750	2
750 to <850	2
850 to <950	1

(3)

If you change the window in screen 4 so that $\mathbf{X s c l}=\mathbf{1 5 0}$, and then press TRACE, you find that with 19 values in the first class, its rectangle does not fit the display (see screen 7). The values of Ymin and Ymax must be adjusted. (One way that works is $Y_{\min }=-6$ and $Y \max =24$.)

Topic 2—Histograms from Frequency and Relative Frequency Tables

A frequency table for the heights (in feet) of tall buildings in Philadelphia, PA is given below with 11 buildings from 350 up to 450 feet and only one building 850 feet or taller.

Class Limits	Frequency
350 to <450	11
450 to <550	10
550 to <650	2
650 to <750	2
750 to <850	2
850 to <950	1

Calculating Class Marks

1. Store the lower class limits in L_{1} and the upper class limits in L2 in the stat editor.
2. Highlight L3 at the top of the spreadsheet, and type $\square \mathrm{L}_{1} \oplus \mathrm{~L}_{2} \square \dagger \mathbf{2}$, as shown in the bottom line in screen 8.
3. Press ENTER to reveal the class marks in L3 (see screen 9 where the frequencies also have been added to L4).

Calculating Relative Frequencies

1. Highlight L5 at the top of the spreadsheet, as shown in screen 9.
2. Enter L4 \div 2nd [LIST] <MATH> 5 :sum(L4, as shown in the bottom line in screen 9.
3. Press ENTER and the relative frequencies are placed in Ls, as shown in screen 10, with 39.29 percent of the buildings in the first class.

(8)

(9)

L3	L4	\|兩	5
400	11	------	
606	$\frac{1}{2}$		
P00	$\frac{2}{2}$		
900			

L3	L4	L5
400	${ }_{10}^{11}$	398星
600	${ }^{10}$	87143
P00	2	07143
goto	${ }_{1}$	61543
---	-	-
L5(7) $=$		

Activity 1, Describing One-Variable Data (cont.)

Setting Up Plot and Window

Set up Plot1 for a Histogram as shown in screen 11 with the WINDOW as shown in screen 12, where
Xmin =350, the lower limit of the first class
Xmax $=950$, the upper limit of the last class
Xscl $=100$, the class width or the distance between the class marks
Ymax = 16 gives room for the maximum frequency of 11, plus extra room for labels at the top of the Histogram.

The Frequency Histogram

Pressing TRACE reveals the frequency Histogram displayed in screen 13.

The relative frequency Histogram is given in screen 16 (with the setup in screens 14 and 15) with $\mathbf{n}=.3929$ percent of the buildings in the first class. (Note that the Freq input is actually the relative frequencies in L5.)

Topic 3—Stem-and-Leaf Plots and Dot Plots

The stem-and-leaf plot and dot plot are easy to make by hand if the data is in order.

1. Make a copy of the list PHILY (the Philadelphia, PA building heights that you saved. See the first page of Activity 1) by storing it in L4.
2. From the home screen, paste LPHILY and press STO L4; or, from the spreadsheet, highlight L4 in the top line, paste LPHILY in the bottom line, and press ENTER.

Putting Data In Order

Sort the values in ascending order from low to high value by pressing STAT 2:SortA(L4 ENTER. Done is displayed, as shown in screen 17.

Stem-and Leaf Plot

Entering the stat editor reveals the data for easy reading. The first seven values shown in screen 18 , when rounded to the nearest ten and given in tens, are 36, 38, 38, 38, 39, 40, 40. These values start the stem-and-leaf plot shown below. The complete plot is given below the start-up plot with data from St.Louis.

```
3|68889
4|00
St. Louis Philadelphia
        98| 3 |68889
    320| 4 000114458899999
    994| 5|0577
    3| 6 |
        | 7 |049
        | 8 |5
        | 9 |
```

St. Louis, Missouri has nine buildings over 350 feet tall as follows.

375390398420434540588593630
(Source: Reprinted with permission from the World Almanac and Book of Facts 1996. Copyright © 1995 K-III Reference Corporation. All rights reserved.)
Above is the complete back-to-back stem-and-leaf plots for the two data sets. St. Louis has a fairly symmetric distribution of tall building heights with no buildings taller than 630 feet (the arch). Philadelphia has many more tall buildings with a distribution skewed to taller values. Until 1986, however, when the seven tallest buildings were built in Philadelphia, St. Louis had the taller buildings.

Dot Plot

With the data in order, a dot plot is easy to construct by hand with one dot for each building above its height scale value, but it can also be plotted easily on the TI-83.

1. Highlight L5, as shown in the top line of screen 18.
2. Press MATH <NUM> 2:round(L4 \div

10$0 \square$, as shown in the bottom line of screen 18 .

(18)

(19)

L4	\|L5	\|LE	3
364	36	1	
375	3日	$\frac{1}{2}$	
31	细	3	
390	39	1	
400	40	1	
LE(T)			

Activity 1, Describing One-Variable Data (cont.)

3. Press ENTER for the heights of the buildings to the nearest 10 feet (given in tens), as shown in screen 19.
4. In L6, type the counting numbers next to each height in L5. There is $\mathbf{1}$ value of $\mathbf{3 6}$, but $\mathbf{1 , 2 , 3}$ values of $\mathbf{3 8}$, and so on, as shown in screen 19.
5. Set up Plot1 for a Scatter plot (the first type), as shown in screen 20.
6. Set up the WINDOW as shown in screen 21.
7. Press TRACE and then \square a few times for screen 22 , which shows there are five buildings approximately 490 feet tall in Philadelphia.

Topic 4—Measures of Central Tendency and Variability

The most common measures of central tendency (the mean and the median) and measures of spread or variability of a distribution (the standard deviation, variance, interquartile range, and five-number summary) are given for both a list of raw data and for data grouped in a frequency table.

Using Raw Data

You will use the heights of tall Philadelphia buildings as stored in list LPHILY in Do This First.

1. Press STAT<CALC> 1:1-Var Stats LPHILY to display screen 23.
2. Press ENTER for screen 24 , and then use \square to see screen 25.
mean - The first value in screen 24 is $\bar{x}=516.1785714$, which is equal to the sum of the data (the second value of the output), or $\Sigma x=14453$ divided by the number of data values, or $\mathbf{n = 2 8}$.
median - Med $=486$ is found in the second screen of the output (screen 25), the middle value of the five-number summary.
five-number summary - From the second screen of the output, $\min X=364, Q 1=402.5$, $\operatorname{Med}=486, Q 3=560, \operatorname{maxX}=945$.
standard deviation $-\mathrm{Sx}=152.902$ and $\sigma x=150.147$ are the last values of the first output screen above \mathbf{n}. (See screen 24.)
$\mathbf{S} \mathbf{x}=\sqrt{ }\left(\left(\Sigma(x-\bar{x})^{2}\right) /(n-1)\right)=\sqrt{ }\left(\left(\Sigma x^{2}-(\Sigma x)^{2} / n\right) /(n-1)\right)$
$\sigma \mathbf{x}=\sqrt{ }\left(\left(\Sigma(x-\mu)^{2}\right) / n\right)=\sqrt{ }\left(\left(\Sigma x^{2}-(\Sigma x)^{2} / n\right) / n\right)$

Note: Because the set of interest is a population of the heights of all the tall buildings in Philadelphia (not a sample of heights), the mean is usually signified as μ but its calculation and value are the same as \bar{x}.
Note: Because the set of interest is a population of the heights of all the tall buildings in Philadelphia (not a sample of heights), σx is appropriate (Sx is used to estimate ox from a sample).
interquartile range - It is easy enough to calculate the interquartile range from Q3-Q1 = 157.5, as shown in the first two lines of screen 26.
variance - It is a bit tedious to calculate the variance by typing in the digits of the standard deviation and then squaring it using x^{2}. You may want to paste σx by pressing VARS 5:Statistics $<X Y>4$: σX and then squaring this, as shown in the last two lines of screen 26.

If your data was a sample from a larger population, you could calculate the sample variance (division by $\mathbf{n - 1}$) in a similar way with VARS 5:Statistics <XY> 3:Sx. Another possibility is to press 2nd [LIST] <MATH> 8:variance(LPHILY, as shown in the last two lines of screen 27. This gives the same answer, 23379.11508.

Using Grouped Data

You will use the frequency table of the Philadelphia data as grouped in Topic 2, including the class marks below. The class marks are stored in L3 and the frequencies in L4. (See screen 28.)

Class Limits	Class Mark	Frequency
350 to <450	400	11
450 to <550	500	10
550 to <650	600	2
650 to <750	700	2
750 to <850	800	2
850 to <950	900	1

1. Press STAT<CALC> 1:1-Var Stats L3 \square L4 for screen 29.
2. Press ENTER and then use to see screens 30 and 31 .

The output is similar to the raw data output because basically, it comes from the same data. However, instead of 11 different values from 350 up to 449, you treat all 11 values as 400 . Likewise, the largest value is treated as 900 instead of the actual 945 . A mean of 517.9 feet for the grouped data compared to the actual 516.2 (in screen 24) feet is not bad.

If the actual data is such that there are in fact eleven 400 s , ten 500 s , two 600 s , two 700 s , two 800 s , and one 900 , then the output using the grouped procedure above is correct and not an approximation.
If you have the raw data, it makes sense to use it. But if you only have a table of grouped data to summarize raw data, this is the option to use.

(28)

(29)

(30)

(31)

Activity 1, Describing One-Variable Data (cont.)

Topic 5-Measures of Position and Cumulative Relative Frequency Distributions (Ogives): Percentiles and Quartiles, Standard Scores (z-scores)

You will work with the heights (in feet) of tall Philadelphia buildings that you stored in list LPHILY in Do This First. This data is duplicated at the beginning of Activity 1.

Finding Standard scores (z-scores)

Standard scores (z scores) are numbers that represent how many standard deviations X is above or below the mean, or $z=(X-\mu) / \sigma x$.

From Topic 4 you found the mean $=\mu=516.18$, and the standard deviation $=\sigma x=150.15$. Use these values to find the z score of the smallest (364 feet) and the tallest (945 feet) buildings in your list. (See screen 32.)
$\begin{array}{ll}\text { Smallest Building: } & z=(\mathbf{3 6 4}-516.18) / 150.15=-\mathbf{1 . 0 1} \\ \text { Largest Building: } & z=(945-516.18) / 150.15=+\mathbf{2 . 8 6}\end{array}$
Largest Building: $\quad z=(945-516.18) / \mathbf{1 5 0 . 1 5}=\boldsymbol{+ 2 . 8 6}$
The 2nd [ENTRY] (last entry) feature works nicely here. Pasting μ and $\sigma \mathbf{x}$ (as shown in Topic 4) is also a possibility.
The smallest value is about one standard deviation below the mean, and the largest value is almost three standard deviations above the mean. This indicates the non-symmetric nature of the distribution (it is skewed to the right).

Finding Percentiles and Quartiles

The percentile of a score indicates what percent of the data values are less in magnitude. Not all textbooks use the same procedure for finding percentiles, but all methods give similar answers as the list size increases.

The first quartile is the same as the twenty-first percentile (Q1= P25); also Q3 = P75, and the median is the same as P50. These three values are part of the five-number summary obtained with STAT <CALC> 1:1-Var Stats LPHILY, as shown in Topic 4, with Q1 = 402.5, $\operatorname{Med}=486, ~ Q 3=560$ and $\mathbf{n}=28$.

1. Put the PHILY data in order in \mathbf{L}_{5} (from smallest to largest value) as was done in Topic 3.
2. Find P40 and P75 (remember $\mathbf{n}=\mathbf{2 8}$).

P40: $0.40 * 28=11.2$. Round up to 12 . The twelfth value of L_{5} or $L_{5}(12)=450$, as shown in screen 33 .

P75: $0.75 * 28=21$. Because this is an integer, take the mean of the twenty-first and twenty-second values, as shown in the display ($\mathbf{Q} 3=560$).
Given a value of 450 feet for a building's height, what percentile value is this in your list?
Going down the list in the stat list editor, you find this is the twelfth value, as shown in screen 34, so there are 11 tall buildings less than 450 feet. Because $11 / 28=0.393$, this is approximately P39. Because you found P40 = 450 (above) and now have $\mathbf{P 3 9}=450$, at least one percentile value is indeed approximate, but these two values would be closer as the size of the data list increased.

Finding Cumulative Relative Frequency Distributions (Ogives) and Percentiles

Using the frequency tables of the building heights in Topic 2 (at right), do the following.

1. Put the lower class limits and the last upper class limit in L1.
2. Put the frequencies in L_{2}, but with the first value being an extra value zero. (See screen 35.)
3. Highlight L3 and paste cumSum(L2, as shown in the last line of screen 35. (cumSum from 2nd [LIST] <OPS> 6).
4. Press ENTER for screen 36 with the cumulative frequencies in L3.
5. Highlight L4 and put L3 $\dagger \mathbf{2 8}$, as shown in the last line of screen 36.
6. Press ENTER for screen 37 with the cumulative relative frequencies in L4.

Class Limits Frequency

350 to <450	11
450 to <550	10
550 to <650	2
650 to <750	2
750 to <850	2
850 to <950	1

(35)

(36)

(37)

Activity 1, Describing One-Variable Data (cont.)

7. Set up Plot1 for an xyLine plot (the second type), as shown in screen 38.
8. Plot with ZOOM 9:ZoomStat, and then press TRACE and \square for the plot in screen 39 .
Notice that $\mathbf{4 5 0}=\mathbf{P 3 9}$ as before and in the second row of the spreadsheet in screen 37 . About 39 percent of the tall buildings (11 buildings) are less than 450 feet.
9. Press \square again to move up to the next point and the third row of the spreadsheet with 21 or 75 percent of the values below 550 feet (the third quartile).

Earlier, you calculated Q3 $=560$ feet (the mean of the twenty-first and twenty-second value). Again, as the sample size increases (such as the results of the Scholastic Aptitude Test (SAT) where all values are represented), these differences will diminish.
10. To approximate other values that are not points in the spreadsheet, press GRAPH, and then the cursor control keys to move the cross hairs as close to the desired point as possible.

The example in screen 40 approximates P50 as 481 compared to the previous value of 486 . You are limited by using straight lines to connect points, but this limitation is reduced as the data set and number of points increase. You are also limited by technology and the width of a pixel.

The ogive in screen 40 indicates the skewed nature of the distribution of the building heights. The slope is very steep up to P75 (between 350 and 550 feet), but the top 25 percent of the data is more spread out (from 550 to 950 feet).

Topic 6-Box Plots and Five-Number Summary

You will start with the heights (in feet) of tall Philadelphia buildings stored in list LPHILY in Do This First. This data is duplicated at the beginning of Activity 1.

Setting up Box plots

1. Set up Plot1 for a Modified Boxplot (the fourth type), as shown in screen 41. It is called modified to distinguish it from the next choice, a regular box plot, called just Boxplot.
2. Press ZOOM 9:ZoomStat for screen 42. If you were set up for a regular Boxplot, you would get the next display in screen 43 . The only difference is that the right "whisker" (these are also sometimes called "box and whisker" plots) is extended out to the maximum value.

Calculating a Five-Number Summary

1. Press TRACE and the median shows a flashing box and value of 486 at the bottom of the screen.
2. Press and you have $\mathbf{Q 1}=\mathbf{4 0 2 . 5}$.

Press again and you have $\min X=364$.
3. Go in the other direction and you find $\mathbf{Q 3}=\mathbf{5 6 0}$, and then skip all the way to the right box for maxX $=945$.

These make up the five-number summary of data, which was also covered in Topic 4 and available from the second screen of STAT <CALC> 1:1-Var Stats LPHILY.

The two points skipped were $X=792$ (shown in screen 44) and $X=848$, the third and second largest values. You separated the top two values from the whiskers to identify them as possible "outliers," values that are far away from the rest of the data and that may have a special story.
(To separate these points, take Q1-1.5 * IQR and
Q3 + $1.5 *$ IQR, where IQR stands for the interquartile range or $I Q R=$ Q3-Q1 $=560-402.5=157.5$ (as shown in Topic 4). Thus, $1.5 * I Q R=1.5 * 157.5=236.25$ and Q3 + 236.25 = 796.25. (See screen 45.) The first value below 796.25 is 792 , but 848 and 945 are above it. Q1-236.25 = 166.25, and none of the buildings in our list were less than that; therefore, no possible outliers are identified off to the left.)

Activity 1, Describing One-Variable Data (cont.)

Box Plot with Histogram

After setting up Plot1 as above in screen 40, set up Plot2 for a Histogram as shown in screen 46 and WINDOW as shown in screen 47.

Pressing GRAPH gives screen 48. The added Histogram (as shown in Topic 1) indicates you might want to treat the five upper values as special.

Side-By-Side Box Plots

Up to three box plots can be plotted on the same screen.
The 28 tallest buildings in New York, New York are stored in list NYNY and listed below. (Twenty-eight buildings were identified as tall in Philadelphia. In New York City, 131 buildings were so identified.)

LNYNY: 700705707716724725730739741743745750
7507527577787928088138148509159279501046
141413621368
(Source: Reprinted with permission from the World Almanac and Book
of Facts 1996. Copyright © 1995 K-III Reference Corporation. All rights reserved.)
Nine buildings are identified as tall in St. Louis, Missouri. The heights are stored in LSTLOU.

LSTLOU: 375390398420434540588593630

1. Set up all three plots as Modified Boxplots, as shown in screen 49.
2. Press ZOOM 9:ZoomStat for the next display (screen 50).
3. Press TRACE and to investigate the different plots.

New York (in the middle) is the city of skyscrapers, and Philadelphia seems much more like St. Louis. Because of the difference in sample size, it is easer to make this later comparison with back-to-back stem-and-leaf plots, as shown in Topic 3.

(49)

