Variables

They are just numbers.

Get the answer as fast as your can! Ready?

- $3+4=$
- $4+3$ = ?
- $17+97+43=157$
- $17+43+97=$
- 28 X-56 $=-1568$
- $-56 \times 28=$?
- $7 \times 11 \times 10=$
- $10 \times 7 \times 11$
-What's the pattern?

Commutative Property

$$
a+b=b+a \quad \text { or } \quad a \cdot b=b \cdot a
$$

If the operation is + or x then you can add in any order.

Get the answer as fast as your can! Ready?

- $0+.7359=$
- $4+3+0=$?
-. $9374872+0=$
- $487963 \times 1=-56 \times 28=$?
- $1 \times 11 \times 1=$
- $1 \times 7+0$
-What's the pattern?

Identity. Does not "change number"
 0 for Addition (+)
 1 for Multiplication (x)

Get the answer as fast as your can! Ready?

- $-7+7=7+7=$
- $50+-50=$?
- $60+=0$
- $+\pi=0$
- $59+=0$
- $\pi+{ }^{-} \pi=$
-What's the pattern?

Inverse Makes the identity. Opposite for addition. What about Multiplication?

- What is $\frac{13}{13}=\frac{5}{5}=\frac{6}{6}=\frac{3}{3}=\frac{N}{N}$
- $\frac{4}{1} \times \frac{1}{4}=\frac{4}{4}=1$
- $\frac{2}{3} \times \frac{3}{2}=\frac{6}{6}=1$
- $\frac{7}{1} \times \frac{?}{?}=1$
- See a pattern?
- Multiplicative Inverse

Associative. $a+(b+c)=(a+b)+c$

- $2+3+7=(2+3)+7=2+(3+7)$
- $2 * 3 * 5=(2 * 3) * 5=2 *(3 * 5)$
- Note All multiplication or All addition you can drop parenthesis.
- $(17.397+9)+9=$???????

Why only ten's

- $5 \times 10=50$
- $5 \times 3=15$
- $5 \times 13=$
- $7 \times 10=70$
- $7 \times 3=21$
- $7 \times 13=$
- $4 \times 10=$
- $4 \times 4=$
- $4 \times 14=$
- $9 \times 100=$
- $9 \times 1=$
- $9 \times 99=$

Distributive Property

- $2(10+7)=2(10)+2(7)=20+14$
- $7(29)=7(20+9)=$
- $5(\Delta+\odot)=5 \Delta+5 \odot$
- What is $(9 * 6)+(9 * 5)=9$ (??)
- What is $6(17)=$
 $+$

Important Ideas

- Subtraction is the same as adding the opposite
- Division is the same as multiplying by multiplicative inverse.

Look Back

- https://www.khanacademy.org/coach/class/5757334940811264/assi gnments
- https://www.khanacademy.org/math/algebra/introduction-to-algebra/alg1-dependent-independent/e/create-two-variable-equations-from-real-world-contexts
- https://www.khanacademy.org/math/algebra/introduction-to-algebra/alg1-dependent-independent/e/match-equations-to-coordinates-on-a-line

MAIN IDEA

Additive Property of Equivalency
If $x=y$ then $x+a=y+a$
If you add the same number to both sides of the $=$ then the equation is equivalent (has the same answer)

Multiplicative Property of Equivalency
If $x=y$ then for all $a \neq 0$ then $a * b=a * y$
If you multiply the same number except 0 to both sides of then = then the equation is equivalent (has the same answer)

